Nakamoto Consensus

Benedikt Bünz
Consensus

• Security Properties:
 • Consistency: Honest nodes do not contradict
 • Liveness: Progress is made

• Network Models
 • Synchronous: Messages get delivered immediately
 • Partially Synchronous: Messages are out of order
Consensus

Committee

Leader

Accepts/Rejects TXs
Problems with approach

- Bribing
- Known committee
 - (must communicate)
- Large committee
 - Large communication
- Honest majority (incentives)
Recap

- Genesis block
- Version (4 bytes)
- Prev (32 bytes)
- Time (4 bytes)
- Bits (4 bytes)
- Nonce (4 bytes)
- Tx root (32 bytes)

80 bytes

coinbase Tx

H

prev

version

BH1

prev

H

prev

BH2

prev

BH3

...
Nakamot Consensus

PoW: Find nonce s.t. $H(\text{Block}) < \text{Target}$
Target s.t. blocks found every 10 min
Nakamoto Consensus

- **Genesis**
 - Prev
 - Time
 - Nonce
 - Root

- **BH₁**
 - Prev
 - Time
 - Nonce
 - Root

- **BH₂**
 - Prev
 - Time
 - Nonce
 - Root

- **BH₃**
 - Prev
 - Time
 - Nonce
 - Root

- **coinbase Tx**

- **BH₂**
 - Time

- **BH₂**
 - Time
 - Nonce
 - Root
Nakamoto Consensus

- Genesis
- BH_1
 - Prev
 - Time
 - Nonce
 - Root
- BH_2
 - Prev
 - Time
 - Nonce
 - Root
- BH_3
 - BH_2
 - Time
 - Nonce
 - Root

coinbase Tx

- BH_2 BH_3
 - Time
 - Root
- BH_3
 - Time
 - Root
Nakamoto Consensus

- Miners “race” to add blocks
 - Need to find PoW solution
 - Probability winning ~ Computation power
 - One winner every ~10 min
 - Target adjusted every 2 weeks
- Leader election/race combined with tx adding
- (Honest) miners extend longest chain
- Timestamps must be roughly accurate
- All transactions must be valid
- Blocks/Transactions become final after k blocks

PoW:
Find nonce s.t. $H(\text{Block}) < \text{Target}$
Forks and Orphans

Working on B

Working on A
Forks and Orphans

Orphaned block

Working on B C

Working on A C
Preventing double spends

I’ll wait k blocks

Here are the keys

I’ll just produce a different chain

No Car TX

We’ll be working on the longest chain

3 BTC For Car
51% Attack

I’ll just produce a different chain

No Car TX ➔ New longest chain

3 BTC For Car

Cloud
Nakamoto properties

1. **Consistency.** Honest nodes agree on all but last k blocks (except with prob. $\exp(-k)$)

2. **Chain quality.** Any consecutive k blocks contain “sufficiently many” honest blocks (except with prob. $\exp(-k)$). *Miners controlling p fraction of power should roughly mine p fraction of blocks.*

3. **Chain growth.** Chain grows at a steady rate.

 g-chain growth: Growth by k blocks every k/g “rounds”
Nakamoto properties => Blockchain

• Consistency implies Blockchain consistency

• Chain growth + chain quality implies Blockchain liveness
 - The chain grows by k blocks every k/g periods
 - By chain quality, a high fraction of blocks are contributed by honest miners, and therefore include all transactions they heard so far
Consistency intuition: Suppose adversary has 49% power

- Adversary can fork chain by 1 block faster than honest miners extend current chain with prob. close to $\frac{1}{2}$, or by 2 with prob. $\frac{1}{4}$
 - No problem! If adversary broadcasts fork, everyone switches, this is now the longest chain

- What if miner forks chain 6 blocks deep and doesn’t broadcast until it has a longer chain than honest?
 - Probability $\frac{1}{64}$ it mines 6 blocks before honest mines 1
 - Probability $< 8 * 2^{-7}$ it mines 7 blocks before honest mines 2
 - What is probability adversary ever catches up?
Consistency intuition: (continued...)

Suppose adversary has $p < 1/2$ fraction of power. What is the probability adversary catches up from 6 blocks behind?

• **Simplified model:** repeated rounds, in every round adversary catches up by 1 block with probability p, and falls behind by 1 block with probability $1 - p$.

• Biased random walk on number line starting at 0, +1 with probability p and -1 with probability $1 - p$. Probability walk ever reaches 6?

• Probability P_z that walk ever reaches $+z$ is $\left(\frac{p}{1-p}\right)^z$ (e.g. $p = 1/3$, then $P_6 < 0.0062$)
Nakamoto consensus

What goes wrong if adversary has $p > 1/2$ power?

- Adversary’s private fork grows at faster rate than honest chain
- For any k, adversary starts k blocks behind, will eventually catch up to length of honest chain
45% Attack

I’ll just produce a different chain

Cloud

Incur network delays and orphans

3 BTC For Car

No Car TX
Nakamoto consensus

Network delay & work difficulty

• What happens if miners can solve puzzles faster than they can propagate solutions through network?
• Adversary might receive the next valid block Δ steps ahead of the other honest nodes ($\Delta = \text{delay}$)

\Rightarrow Adversary starts working on next puzzle with a Δ time head start over other honest nodes

$O(\Delta)$ “free” hash trials
Nakamoto consensus

Adjusting difficulty for Δ

$$\alpha(1 - \alpha \Delta) > \beta$$

Intuition:
If `block-time' is $c\Delta = \frac{1}{\alpha}$ (i.e. honest puzzle solved every $c\Delta$ steps)
Then on average, honest nodes waste Δ steps of work every $c\Delta$ steps, while adversary never wastes work. So “effective” reduced honest rate is

Formula from [PSS ‘16] building on [GKL15, SZ15]
Nakamoto consensus

Adjusting difficulty for Δ

Honest mining rate

\[\alpha (1 - 2\alpha (\Delta + 1)) > \beta \]

Adversary mining rate

Intuition:

If `block-time’ is $c\Delta = \frac{1}{\alpha}$ (i.e. honest puzzle solved every $c\Delta$ steps)

Then on average, honest nodes waste Δ steps of work every $c\Delta$ steps, while adversary never wastes work. So “effective” reduced honest rate is

\[
\alpha \left(\frac{c}{c+1} \right) \approx \alpha \left(\frac{c-1}{c} \right) = \alpha \left(1 - \frac{1}{c} \right) = \alpha (1 - \alpha \Delta)
\]

Formula from [PSS ‘16] building on [GKL15, SZ15]
Blue line = max value of p s.t. $\frac{\beta}{\alpha} = \frac{p}{1-p}$ and $\frac{\beta}{\alpha} < 1 - 2(\Delta + 1)\alpha$

Red line = min p value for which attack from PSS works

Nakamoto magically chose $c = 60$ (10 min blocktime assuming 10s network delay)
Long forks are impossible but short forks may not be.
This is a liveness issue.
Need to ensure that some “honest” blocks are in the longest chain.
Nakamoto chain quality

- Chain Quality is percentage of honestly mined blocks
 - Honest mined blocks include all transactions!
- Say the adversary controls a p fraction of the mining power $p < \frac{1}{2}$
- Ideally honest parties mine an $1 - p$ fraction
- Can prove they mine at least $1 - \frac{p}{1-p}$

$$p = \frac{1}{3} \rightarrow Q = \frac{1}{2}$$

If $p > \frac{1}{2}$ then adversary could mine every block in worst case
⇒ chain quality is 0
For every \(p < \frac{1}{2} \), if mining difficulty is appropriately set as function of network delay \(\Delta \) then Nakamoto consensus guarantees:

1. Consistency (for \(\alpha, \beta, \Delta \) satisfying formula)
2. Chain quality: \(1 - \frac{p}{1-p} \) fraction blocks honest
3. \(O(1/\Delta) \)-Chain growth
Nakamoto Consensus and Partial Synchrony

- Nakamoto Consensus can be secure up to $\frac{1}{2}$ corruptions
- Can tolerate network delays
- Contradicts partial synchrony lower bound?
 - No
- Protocol needs a bound on delays (c)
- Consistency broken even with honest nodes
Nakamoto Properties

- Anonymous participation
- Nodes can join/leave
 - Very scalable
 - Sleeping Beauty property
- Leader not known beforehand
 - Makes bribing harder
- Up to ½ corruptions

- Slow
 - Even when everyone is honest
- Resource intensive
 - PoS based possible
- Long forks possible
- No guarantees under long delays
Incentives

• Mining (solving PoW puzzles) is very expensive
• Honest majority does not seem realistic
• Satoshi’s genius idea: Combine issuance and rewards
• Block reward only paid if block part of longest chain
• High Variance -> Mining Pools
Incentives

Large opportunity cost for unsuccessful attacks
Selfish mining attack

Attacker has 1/3 of mining power. Miner is rational (maximize rewards)

Keeps block private

Once attacker has a two block lead he can mine until honest chains catch up
Selfish mining attack

Attacker has 1/3 of mining power. Miner is rational (maximize rewards)

Keeps block private

Once attacker has a two block lead he can mine until honest chains catch up

Attacker publishes chain and invalidates honest blocks
Selfish mining attack

Attacker has 1/3 of mining power. Miner is rational (maximize rewards)

Keeps block private

If honest miners finds block: Publish and it’s a block race (Attacker has at least 1/3 p of winning)
Selfish mining analysis

Honest reward = 1

P Block Race: 2/3

Win: 1/3 chance 2 of 3 blocks Reward 2
Loose: 2/3 chance Reward 0

P Run away: 1/3

\[
\frac{2}{3} \times \frac{1}{3} \times 2 + \frac{1}{3} \times 2 = \frac{10}{9} > 1
\]
Selfish Mining

Optimal Selfish mining

Explains why chain quality <1-p
Difficulty Resets

- Computation increases
- But block time ~constant
- Every two weeks difficulty reset based on prior two weeks
- Based on time stamps
- Slightly lagging
- Miners accept *heaviest* chain
Difficulty Reset Attacks

• Attacker with 1/3 hash power, Difficulty 1
• Fork 100 blocks deep
• Modifies time stamps on private fork such that blocks look like they are mined in short succession
• Increases difficulty to 200
• Probability that attacker will mine 1 block of difficulty 200 while honest chain produces 100 blocks of difficulty 1:
 • Poisson distribution with expectation $1/6^{th}$
 • $\Pr \left[X \geq 1, X \sim \text{Poisson} \left[\frac{1}{6} \right] \right] = 15.3\%$
• Defense: Max difficulty change 4x, 1/4th (Magic number)
No Attacks in Practice?

- Attacks possible but not seen
- Ghash.IO had >50%
 - Gave up mining power
 - No Selfish mining attacks
- Why?
 - Miners care about Bitcoin price
 - Not rational in $ terms to attack
 - Not guaranteed in the future
Changing the rules

- Protocol upgrades
 - New Transaction types (Add Smart Contracts)
 - New Cryptography (Signatures/ZK-Proofs)
 - New Consensus (Switch from PoW to PoS)
 - Increase Blocksize (1MB) Bitcoin/Bitcoin Cash

- How do we reach consensus on these things
Hard Forks

- Technically the simplest
- New protocol version (new software)
- Everyone upgrades
- New protocol incompatible with old protocol
- Everyone needs to upgrade
- Ethereum/Zcash/Monero do this semi regularly
- If not two versions of protocol exist community splits
 - Ethereum/Ethereum Classic
 - Bitcoin/Bitcoin Cash
 - Which is which is not clear (Community consensus)
Soft Forks

• Rules become more restrictive
• Disabling old OP_CODES
• Further specifying signatures (ECDSA)
• Old clients still work but their transactions may get rejected
• If >50% upgrade then new rules enforced
• Segregated Witness was a contentious soft fork
• A lot can be implemented as a “soft fork”
Next lecture: Nakamoto Consensus, Incentives, Large Scale Consensus