
Fundamentals of Consensus

CS251 Fall 2023
(cs251.stanford.edu)

Ertem Nusret Tas

Byzantine Generals Problem

• Encapsulates the problem of reaching consensus.
• Introduced by Lamport et al. in 1982.
• Problem statement:

• There are 𝑛 generals (where 𝑛 is fixed), one of which is the commander.
• Some generals are loyal, and some of them can be traitors (including

the commander).
• The commander sends out an order that is either attack or retreat to

each general.
• If the commander is loyal, it sends the same order to all generals.
• All generals take an action after some time.

The Byzantine Generals Problem (1982)

loyal

Byzantine Generals Problem

Goal:
• Agreement: No two loyal generals take different actions.
• Validity: If the commander is loyal, then all loyal generals must take the action

suggested by the commander.
• Termination: All loyal generals must eventually take some action.

retreat
retreat retreat

retreat

retreat retreat retreat attack

loyal loyal loyal traitor

traitor

attack

retreat retreat retreat attack

Byzantine Generals Problem

Goal:
• Agreement: No two loyal generals take different actions.
• Validity: If the commander is loyal, then all loyal generals must take the action

suggested by the commander.
• Termination: All loyal generals must eventually take some action.

retreat
retreat

retreat

loyal loyal loyal traitor

traitor

attack

retreat retreat retreat attack

Byzantine Generals Problem

Goal:
• Agreement: No two loyal generals take different actions.
• Validity: If the commander is loyal, then all loyal generals must take the action

suggested by the commander.
• Termination: All loyal generals must eventually take some action.

retreat
retreat

retreat

loyal loyal loyal traitor

From Generals to Nodes

• Solution to the Byzantine Generals Problem is a consensus protocol.
• When modelling consensus protocols:

• Generals → Nodes
• Commander → Leader
• Loyal → Honest, Traitor → Adversary

• What can the adversarial nodes do?

Adversary

• The adversary can corrupt nodes, after which they are called adversarial.
• Crash faults if the adversarial nodes do not send or receive any

messages.

• Omission faults if the adversarial nodes can selectively choose to drop
or let through each messages sent or received.

• Byzantine faults (Byzantine adversary) if the adversarial nodes can
deviate from the protocol arbitrarily.

Adversary

We typically bound the adversary’s power by assuming an upper bound
(𝑓)	on the number of nodes (𝑛) that can ever be adversarial.

• e.g., 𝑓 < 𝑛, 𝑓 < !
"
, 	𝑓 < !

#
, …

Communication

• Nodes can send messages to each other, authenticated by signatures.

• There is a public key infrastructure (PKI) setup.

• Adversary cannot simulate honest nodes!

• There are other ways to prevent such simulation (e.g., proof-of-work).

Consensus protocols typically assume that the adversary cannot forge
signatures. Why?

Communication

We assume that the adversary controls the delivery of the messages subject
to certain limits (the adversary runs the network):

• In a synchronous network, adversary must deliver any message sent by an
honest node to its recipient(s) within ∆ rounds. Here, ∆ is a known bound.

• In an asynchronous network, adversary can delay any message for an
arbitrary, yet finite amount of time. However, it must eventually deliver
every message sent by the honest nodes.

Byzantine Generals Problem
• There are 𝑛 generals (where 𝑛 is fixed), one of which is the commander.
• For a public 𝑓, a subset of 𝑓 generals is adversarial, and all other generals are loyal.
• The commander sends out an order that is either attack or retreat to each general.
• Network is synchronous.

Byzantine Generals Problem:

• Agreement: No two loyal generals take different actions.

• Validity: If the commander is loyal, then all loyal generals must take the action
suggested by the commander.

• Termination: All loyal generals must eventually take some action.

• There are 𝑛 nodes (where 𝑛 is fixed), one of which is the leader.
• For a public 𝑓, a subset of 𝑓 nodes is adversarial, and all other nodes are honest
• The leader has an input value 0 or 1.
• Network is synchronous.

Byzantine Broadcast Problem:

• Agreement: No two honest nodes output different values.

• Validity: Leader is honest ⇒ All honest nodes output the value input to the leader.

• Termination: All honest nodes eventually output some value.

Byzantine Broadcast (BB)

• There are 𝑛 nodes (where 𝑛 is fixed), one of which is the leader.
• For a public 𝑓, a subset of 𝑓 nodes is adversarial, and all other nodes are honest
• The leader has an input value 0 or 1.
• Network is synchronous.

Byzantine Broadcast Problem:

• Agreement: No two honest nodes output different values.

• Validity: Leader is honest ⇒ All honest nodes output the value input to the leader.

• Termination: All honest nodes eventually output some value.

Byzantine Broadcast (BB)

even when the leader
is adversarial!!

• There are 𝑛 nodes (where 𝑛 is fixed), one of which is the leader.
• For a public 𝑓, a subset of 𝑓 nodes is adversarial, and all other nodes are honest
• The leader has an input value 0 or 1.
• Network is synchronous.

Byzantine Broadcast Problem:

• Agreement: No two honest nodes output different values.

• Validity: Leader is honest ⇒ All honest nodes output the value input to the leader.

• Termination: All honest nodes eventually output some value.

Byzantine Broadcast (BB)

even when the leader
is adversarial!!

No double
spend

No
censorship

Protocol for BB: Setup

• Denote the nodes by the indices 𝑖 = 0, 1, 2, … , 𝑛.
• Node 0 is the leader. Let 𝑣 denote its value.
• Let 𝑉$ denote the set of values received by node 𝑖.
• Time moves in lock-step.

• Let < 𝑣%: 𝑖 > denote the value 𝑣′ signed by node 𝑖.
• Let < 𝑣%: 𝑖, 𝑗, … , 𝑙, 𝑘 > denote a signature chain signed by 𝑖, 𝑗, … , 𝑘:

• Recursive definition: < 𝑣%: 𝑖, 𝑗, … , 𝑙, 𝑘 >	=<	< 𝑣%: 𝑖, 𝑗, … , 𝑙 >	∶ 	𝑘 >

< 𝑣!: 0 >	

< 𝑣!: 0,1 >	

< 𝑣%: 0,1,2 >	

Strawman Protocol I

• Time 0: Leader broadcasts < 𝑣: 0 >. // 𝑣 is either 0 or 1.
• Time 1:

• Node 𝑖:
• Upon receiving any < 𝑣%: 0 >, add 𝑣% to 𝑉$.
• Decide value choice(𝑉$).

choice 𝑉$:
• If 𝑉$ = {𝑣}, return 𝑣.
• Else, return 0.

(the broadcast value)

𝑉!= {} 𝑉"= {}

Strawman Protocol I

1: honest

0: honest
Input value is 1.

1 1

2: honest

Time 0

𝑉!= {1}

Time 1

𝑉"= {1}

Strawman Protocol I

1 1

1: honest

0: honest
Input value is 1.

1 1

2: honest

Validity is satisfied!

𝑉!= {} 𝑉"= {}

Strawman Protocol I

1: honest

0: adversarial

1 0

2: honest

Time 0

Problem: what if the leader is adversarial?

Time 1

𝑉"= {0}𝑉!= {1}

Strawman Protocol I

1 0

1: honest

0: adversarial

1 0

2: honest

Agreement is violated!

Problem: what if the leader is adversarial?

Strawman Protocol II

• Time 0: Leader broadcasts < 𝑣: 0 >. // 𝑣 is either 0 or 1.
• Time 1:

• Node 𝑖:
• Upon receiving any < 𝑣%: 0 >,

add 𝑣% to 𝑉$,
and broadcast < 𝑣%: 0, 𝑖 >.

• Time 2:
• Node 𝑖:

• Upon receiving any < 𝑣%: 0, 𝑗 >, where 𝑗 ≠ 0, add 𝑣% to 𝑉$.
• Decide value choice(𝑉$).

(the broadcast value)

𝑉"= {}

Strawman Protocol II

1: honest

0: adversarial

1 0

2: honest

𝑉!= {}

Time 0

𝑉"= {0}𝑉!= {1}

Time 1

Strawman Protocol II

1: honest

0: adversarial

1 0

2: honest10

𝑉"= {0,1}𝑉!= {0,1}

Time 2

Strawman Protocol II

0 0

1: honest

0: adversarial

1 0

2: honest

Agreement is satisfied!

10

𝑉!= {}

Strawman Protocol II

1: honest 2: adversarial

Time 0

Problem: what if one of the nodes is adversarial?

< 1: 0 > < 1: 0 >

0: honest
Input value is 1.

𝑉!= {1}

Strawman Protocol II

1: honest 2: adversarial

Problem: what if one of the nodes is adversarial?

Time 1

< 1: 0 > < 1: 0 >

< 1: 0,1 >

< 0: 2,2 >

0: honest
Input value is 1.

𝑉!= {1}

Strawman Protocol II

1: honest 2: adversarial

Problem: what if one of the nodes is adversarial?

Time 1

< 1: 0 > < 1: 0 >

< 1: 0,1 >

< 0: 2,2 >

Invalid since the first signature is
not by the leader, i.e., node 0.
Thus, 0 is not added to 𝑉".

0: honest
Input value is 1.

𝑉!= {1}

Strawman Protocol II

1: honest 2: adversarial

Problem: what if one of the nodes is adversarial?

Time 2

< 1: 0 > < 1: 0 >

< 1: 0,1 >

< 0: 2,2 >

Validity is satisfied as well!
So are agreement and termination!

1

0: honest
Input value is 1.

Dolev-Strong (1983)

• Time 0: Leader broadcasts < 𝑣: 0 >. // 𝑣 is either 0 or 1.
• Time 𝑡 = 1,… , 𝑓:

• Node 𝑖:
• Upon receiving any < 𝑣%: 0, 𝑖&… , 𝑖'(& >, where 𝑖 ≠ 𝑖& ≠ ⋯ ≠ 𝑖'(& and
𝑣% ∉ 𝑉$, add 𝑣% to 𝑉$ and broadcast < 𝑣%: 0, 𝑖&… , 𝑖'(&, 𝑖 >.

• Time 𝑓 + 1:
• Node 𝑖:

• Upon receiving any < 𝑣%: 0, 𝑖&… , 𝑖) >, where 𝑖 ≠ 𝑖& ≠ ⋯ ≠ 𝑖) and
𝑣% ∉ 𝑉$, add 𝑣% to 𝑉$.

• Decide value choice(𝑉$).
Authenticated Algorithms for Byzantine Agreement (1983)

(the broadcast value)

Security of Dolev-Strong (1983)

Theorem (Dolev-Strong, 1983): For any 𝑓 < 𝑛, Dolev-Strong (1983) with 𝑛
nodes and 𝑓 + 1 rounds satisfies agreement, validity and termination in a
synchronous network.

Converse Theorem: Any (deterministic) protocol that satisfies agreement,
validity and termination for 𝑛 nodes in a synchronous network with resilience
up to 𝑓 crash (as well as Byzantine) faults must have an execution with at
least 𝑓 + 1 rounds.

Authenticated Algorithms for Byzantine Agreement (1983)
Distributed Algorithms (1996)
A Simple Bivalency Proof that t-Resilient Consensus Requires t + 1 Rounds (1998)

(try to prove yourself … the proof is in the slides at the end of the deck)

State Machine Replication (SMR)

A Centralized Bank

Blockchain (State Machine Replication)

𝑡𝑥#
𝑠𝑡#𝑠𝑡#$!

𝑡𝑥"𝑡𝑥!𝑡𝑥%…

𝑡𝑥"𝑡𝑥!𝑡𝑥%…

𝑡𝑥"𝑡𝑥!𝑡𝑥%…

𝑡𝑥"𝑡𝑥!𝑡𝑥%…

Log (Ledger): an ever-growing, linearly-
ordered sequence of transactions.

𝑦#

State Machine Replication (SMR)

Two parties of SMR:
• Replicas receive transactions, execute the SMR protocol and determine the log.
• Clients are the learners: They communicate with the replicas to learn the log.
Goal of SMR is to ensure that the clients learn the same log.

𝑅& 𝑅' 𝑅(𝑅) 𝑅*

𝑡𝑥! 𝑡𝑥"𝑡𝑥+ 𝑡𝑥%

𝑅,

Execute the SMR protocol

𝑡𝑥#𝑡𝑥"𝑡𝑥$… 𝑡𝑥#𝑡𝑥"𝑡𝑥$… 𝑡𝑥#𝑡𝑥"𝑡𝑥$… 𝑡𝑥#𝑡𝑥"𝑡𝑥$… 𝑡𝑥"𝑡𝑥#𝑡𝑥%… 𝑡𝑥#𝑡𝑥"𝑡𝑥$…

Replicas
(miners)

State Machine Replication (SMR)

𝑅& 𝑅' 𝑅(𝑅) 𝑅*

𝑡𝑥! 𝑡𝑥"𝑡𝑥+ 𝑡𝑥%

𝑅,

Execute the SMR protocol

𝑡𝑥#𝑡𝑥"𝑡𝑥$… 𝑡𝑥#𝑡𝑥"𝑡𝑥$… 𝑡𝑥#𝑡𝑥"𝑡𝑥$… 𝑡𝑥#𝑡𝑥"𝑡𝑥$… 𝑡𝑥"𝑡𝑥#𝑡𝑥%… 𝑡𝑥#𝑡𝑥"𝑡𝑥$…

Replicas
(miners)

𝐿𝑂𝐺-! = 𝑡𝑥"𝑡𝑥!𝑡𝑥%…

𝐿𝑂𝐺-+ = 𝑡𝑥"𝑡𝑥!𝑡𝑥%…

𝐶!

𝐶+

𝐿𝑂𝐺-" = 𝑡𝑥"𝑡𝑥!𝑡𝑥%…

𝐿𝑂𝐺-% = 𝑡𝑥"𝑡𝑥!𝑡𝑥%…

𝐶"

𝐶%

Wallets are an example of a client.

Wallets ask the replicas what the
correct log is.

Wallets do not execute the SMR
protocol and do not talk to each other.

Clients (Wallets) Clients (Wallets)

Wallet asking
for the log +

response

State Machine Replication (SMR)

𝑅& 𝑅' 𝑅(𝑅) 𝑅*

𝑡𝑥! 𝑡𝑥"𝑡𝑥+ 𝑡𝑥%

𝑅,

Execute the SMR protocol

𝑡𝑥#𝑡𝑥"𝑡𝑥$… 𝑡𝑥#𝑡𝑥"𝑡𝑥$… 𝑡𝑥#𝑡𝑥"𝑡𝑥$… 𝑡𝑥#𝑡𝑥"𝑡𝑥$… 𝑡𝑥"𝑡𝑥#𝑡𝑥%… 𝑡𝑥#𝑡𝑥"𝑡𝑥$…

Replicas

𝐿𝑂𝐺-! = 𝑡𝑥"𝑡𝑥!𝑡𝑥%…

𝐿𝑂𝐺-+ = 𝑡𝑥"𝑡𝑥!𝑡𝑥%…

𝐶!

𝐶+

𝐿𝑂𝐺-" = 𝑡𝑥"𝑡𝑥!𝑡𝑥%…

𝐿𝑂𝐺-% = 𝑡𝑥"𝑡𝑥!𝑡𝑥%…

𝐶"

𝐶%

How does a wallet learn the correct log
from the replicas?

• It asks the replicas what the correct
log is.

• Wallet then accepts the answer given
by majority of the replicas as its log.

Wallet learns the correct log if over half
of the replicas are honest!

Clients (Wallets) Clients (Wallets)

Wallet asking
for the log +

response

Security for SMR: Definitions

Concatenation (𝑨||𝑩):
• Suppose we have sequences 𝐴 = 𝑡𝑥&𝑡𝑥" and B = 𝑡𝑥#𝑡𝑥*. What is 𝐴||𝐵?

𝐴||𝐵 = 𝑡𝑥&𝑡𝑥"𝑡𝑥#𝑡𝑥*
Prefix relation (𝑨 ≼ 𝑩): Sequence 𝐴 is said to be a prefix of sequence 𝐵, if there
exists a sequence 𝐶 (that is potentially empty) such that 𝐵 = 𝐴||𝐶.
Suppose we have 𝐴 = 𝑡𝑥&𝑡𝑥"𝑡𝑥#𝑡𝑥*, 𝐵 = 𝑡𝑥&𝑡𝑥"𝑡𝑥#	and 𝐷 = 𝑡𝑥&𝑡𝑥"𝑡𝑥*.
• Is 𝐵 a prefix of 𝐴?

• Yes
• Is 𝐷 a prefix of 𝐴?

• No

Security for SMR: Definitions

Two sequences 𝐴	and 𝐵 are consistent if either 𝐴 ≼ 𝐵 is true or	𝐵 ≼ 𝐴 is true
or both statements are true.

Are these two logs consistent: 𝐿𝑂𝐺+,$-. 	= 𝑡𝑥&𝑡𝑥"𝑡𝑥#𝑡𝑥*, 𝐿𝑂𝐺/01 	=
𝑡𝑥&𝑡𝑥"𝑡𝑥#?
• Yes!

What about 𝐿𝑂𝐺+,$-. 	= 𝑡𝑥&𝑡𝑥"𝑡𝑥#, 𝐿𝑂𝐺/01 	= 𝑡𝑥&𝑡𝑥"𝑡𝑥#𝑡𝑥*?
• Yes!

What about 𝐿𝑂𝐺+,$-. 	= 𝑡𝑥&𝑡𝑥", 𝐿𝑂𝐺/01 	= 𝑡𝑥&𝑡𝑥#?
• No!

Security for SMR

Let 𝐿𝑂𝐺'$ denote the log outputted by a client 𝑖 at time 𝑡.
Then, a secure SMR protocol satisfies the following guarantees:

Safety (Consistency):

• For any two clients 𝑖 and 𝑗, and times 𝑡 and 𝑠: either 𝐿𝑂𝐺'$ ≼ 𝐿𝑂𝐺2
3 is

true or 𝐿𝑂𝐺2
3 ≼ 𝐿𝑂𝐺'$ is true or both (Logs are consistent).

Liveness:
• If a transaction 𝑡𝑥 is input to an honest replica at some time 𝑡, then for

all clients 𝑖, and times 𝑠 ≥ 𝑡 + 𝑇-0!): 𝑡𝑥 ∈ 𝐿𝑂𝐺2$.

Similar to agreement!

Similar to validity and termination!

Security for SMR

Let 𝐿𝑂𝐺'$ denote the log outputted by a client 𝑖 at time 𝑡.
Then, a secure SMR protocol satisfies the following guarantees:

Safety (Consistency):

• For any two clients 𝑖 and 𝑗, and times 𝑡 and 𝑠: either 𝐿𝑂𝐺'$ ≼ 𝐿𝑂𝐺2
3 is

true or 𝐿𝑂𝐺2
3 ≼ 𝐿𝑂𝐺'$ is true or both (Logs are consistent).

Liveness:
• If a transaction 𝑡𝑥 is input to an honest replica at some time 𝑡, then for

all clients 𝑖, and times 𝑠 ≥ 𝑡 + 𝑇-0!): 𝑡𝑥 ∈ 𝐿𝑂𝐺2$.

No double
spend

No
censorship

Similar to agreement!

Similar to validity and termination!

• Alice’s ledger at time 𝑡"
contains 𝑡𝑥":

𝐿𝑂𝐺&"
'()*+ =< 𝑡𝑥" >

• Alice thinks it received
Eve’s payment and sends

over the car.

Why is safety important?
Suppose Eve has a UTXO.
• 𝑡𝑥": transaction spending Eve’s UTXO to pay to car vendor Alice.
• 𝑡𝑥#: transaction spending Eve’s UTXO to pay to car vendor Bob.

𝑡. = 0 𝑡! 𝑡"
• Bob’s ledger at time 𝑡#

contains 𝑡𝑥#:
𝐿𝑂𝐺&#

,-. =< 𝑡𝑥# >
• Bob thinks it received

Eve’s payment and sends
over the car.

Eve

Alice Bob

𝑈𝑇𝑋𝑂/0+

spent to
pay Alice

spent to
pay Bob

Suppose Eve has a UTXO.
• 𝑡𝑥": transaction spending Eve’s UTXO to pay to car vendor Alice.
• 𝑡𝑥#: transaction spending Eve’s UTXO to pay to car vendor Bob.

• Alice’s ledger at time 𝑡"
contains 𝑡𝑥":

𝐿𝑂𝐺&"
'()*+ =< 𝑡𝑥" >

• Alice thinks it received
Eve’s payment and sends

over the car.

Why is safety important?

𝑡. = 0 𝑡! 𝑡"
• Bob’s ledger at time 𝑡#

contains 𝑡𝑥#:
𝐿𝑂𝐺&#

,-. =< 𝑡𝑥# >
• Bob thinks it received

Eve’s payment and sends
over the car.

Eve

Alice Bob

𝑈𝑇𝑋𝑂/0+

spent to
pay Alice

spent to
pay Bob

When safety is violated, Eve can double-spend!

safety violation

SMR vs. Byzantine Broadcast

• Single shot vs. Multi-shot
• Broadcast is single shot consensus. Each node outputs a single value.
• State Machine Replication is multi-shot. Each client continuously outputs

a log, which is a sequence of transactions (values).
• Who are the learners?

• In Broadcast, the nodes executing the protocol are the same as the
nodes that output decision values.

• In State Machine Replication, protocol is executed by the replicas,
whereas the goal is for the clients to learn the log.
• Replicas must ensure that the clients learn the same log.

Building an SMR protocol

 Next lecture …

Next lecture: Consensus in the Internet Setting

END OF LECTURE

Security Proof for Dolev-Strong (1983)

Proof: We prove that Dolev-Strong satisfies termination, validity and
agreement.

Termination: Protocol terminates in 𝑛 + 1 time.

Validity: An honest leader signs only one value, namely its value 𝑣.
It is received by all honest nodes at time 1 and the only signature chain that
can exist are those with the value 𝑣.

Security Proof for Dolev-Strong (1983)
Agreement: Suppose an honest node 𝑖 added some value 𝑣′ to 𝑉$ at some
time 𝑡 ≤ 𝑛.	Then, node 𝑖 must have received a length 𝑡 signature chain on 𝑣′,
i.e., < 𝑣%: 0, 𝑖&… , 𝑖'(& >, at time 𝑡. Now,

• If 𝑡 ≤ 𝑛 − 1, node 𝑖 will broadcast 𝑣′ with a length 𝑡 + 1 signature chain.
• If 𝑡 = 𝑛, there must be a signature by an honest node among the 𝑛 − 1

nodes 𝑖&… , 𝑖!(&, (e.g., 𝑖3) that broadcast 𝑣′ with length 𝑗 ≤ 𝑛 − 1	
signature chain.

In either case, all honest nodes add 𝑣′ to 𝑉$ latest at time 𝑛, i.e., before
termination.

Finally, any value added by an honest node by termination is added by all
other honest nodes by termination, i.e., 𝑉$ = 𝑉3 for all honest nodes 𝑖, 𝑗.

