Building a SNARK

Dan Boneh
Recap: high-level goals

• Private transactions on a public blockchain

• Blockchain scaling, such as proof-based Rollup

• Privately prove compliance, such as a private proof of solvency
Recap: non-interactive proof systems
(for NP)

Public arithmetic circuit: \(C(x, w) \rightarrow \mathbb{F}_p \)

public statement in \(\mathbb{F}_p^n \) \(\triangleright \) secret witness in \(\mathbb{F}_p^m \)

Let \(x \in \mathbb{F}_p^n \). Two standard goals for prover P:

(1) **Soundness**: convince Verifier that \(\exists w \) s.t. \(C(x, w) = 0 \)
 (e.g., \(\exists w \) such that \([H(w) = x \) and \(0 < w < 2^{60}] \))

(2) **Knowledge**: convince Verifier that P “knows” \(w \) s.t. \(C(x, w) = 0 \)
 (e.g., P knows a \(w \) such that \(H(w) = x \))
A non-interactive proof system is a triple \((S, P, V)\):

- \(S(C) \rightarrow\) public parameters \((S_p, S_v)\) for prover and verifier

 \((S_p, S_v)\) is called a *reference string*

- \(P(S_p, x, w) \rightarrow\) proof \(\pi\)

- \(V(S_v, x, \pi) \rightarrow\) accept or reject
proof systems: properties (informal)

Prover \(P(pp, x, w) \)
Verifier \(V(pp, x, \pi) \)

proof \(\pi \)

accept or reject

Complete: \(\forall x, w: C(x, w) = 0 \Rightarrow V(S_v, x, P(S_p, x, w)) = \text{accept} \)

Proof of knowledge: \(V \) accepts \(\Rightarrow P \) “knows” \(w \) s.t. \(C(x, w) = 0 \)

in some cases, **soundness** is sufficient: \(\exists w \) s.t. \(C(x, w) = 0 \)

Zero knowledge (optional): \((x, \pi) \) “reveals nothing” about \(w \)
SNARK: succinct argument of knowledge

Goal: P wants to show that it knows \(w \) s.t. \(C(x, w) = 0 \)

Succinct:

- Proof \(\pi \) should be **short** [i.e., \(|\pi| = O(\log(|C|), \lambda) \)]
- Verifying \(\pi \) should be **fast** [i.e., \(\text{time}(V) = O(|x|, \log(|C|), \lambda) \)]

note: if SNARK is zero-knowledge, then called a **zkSNARK**
A simple PCP-based SNARK

[Kilian’92, Micali’94]
A simple construction: PCP-based SNARK

The PCP theorem: Let $C(x, w)$ be an arithmetic circuit. There is a proof system that for every x proves $\exists w: C(x, w) = 0$ as follows:

Prover $P(S_p, x, w)$
- proof π

Verifier $V(S_v, x)$
- read only $O(\lambda)$ bits of π
- output accept or reject

V always accepts valid proof. If no w, then V rejects with high prob.

Size of proof is $poly(|C|)$. (not succinct)
Converting a PCP proof to a SNARK

Prover $P(S_p, x, w)$

Verifier $V(S_v, x)$

Merkle root h

open k positions of π ($k = O(\lambda)$)

k opening and Merkle proofs

$O(k \log |C|)$ hashes

output accept or reject

Verifier sees $O(\lambda \log |C|)$ data \Rightarrow succinct proof.

Problem: interactive
Making the proof non-interactive

The **Fiat-Shamir heuristic:**

- public-coin interactive protocol \Rightarrow non-interactive protocol

 public coin: all verifier randomness is public (no secrets)

![Diagram](image-url)

Prover $P(S_p, x, w)$

- send msg1
- compute r from S_p, x, and w

Verifier $V(S_v, x)$

- choose random bits r
- compute msg2 from S_v, x, and r

- accept or reject
Making the proof non-interactive

Fiat-Shamir heuristic: $H: M \rightarrow R$ a cryptographic hash function

- idea: prover generates random bits on its own (!)

Prover $P(S_p, x, w)$
- generate $msg1$
- $r \leftarrow H(x, msg1)$
- generate $msg2$

Verifier $V(S_v, x)$
- $\pi = (msg1, msg2)$
- $|\pi| = O(\lambda \log |C|)$
- $r \leftarrow H(x, msg1)$
- accept or reject

Thm: this is a secure SNARK assuming H is a random oracle
Let’s build an extractor E for the interactive protocol:

- After prover commits to Merkle root of proof

 E asks prover to open many batches of $k = O(\lambda)$ positions of π
 (by rewinding prover)

- E fails to extract cell #j of π if

 (1) prover produces a false Merkle proofs (efficient prover cannot), or
 (2) prover fails (i.e., verifier rejects) whenever j is in batch to open:

 $\Pr[\text{prover fails}] \geq \Pr[j \text{ in batch }] = 1 - (1 - 1/|\pi|)^k$

 so: this cannot happen if k is sufficiently large

\Rightarrow E extracts entire proof π. Once π is known, E can obtain w from π.
Simple transparent SNARK from the PCP theorem
• Use Fiat-Shamir heuristic to make non-interactive
• We will apply Fiat-Shamir in many other settings

The bad news: an impractical SNARK --- Prover time too high

Better SNARKs: Goal: Time(Prover) = $\tilde{O}(|C|)$
Building an efficient SNARK
Many SNARKs are built in two steps:

- Polynomial interactive oracle proofs (poly-IOP)
- Polynomial commitment scheme

(zk)SNARK for general circuits
Recall: commitments

Two algorithms:

- $\text{commit}(m, r) \rightarrow \text{com}$
- $\text{verify}(m, \text{com}, r) \rightarrow \text{accept or reject}$

Properties:

- binding: cannot produce two valid openings for com.
- hiding: com reveals nothing about committed data
Notation:

Fix a finite field: \(\mathbb{F}_p = \{0,1, \ldots, p - 1\} \)

\(\mathbb{F}_p^{(\leq d)}[X] \): all polynomials in \(\mathbb{F}_p[X] \) of degree \(\leq d \).
(1) Polynomial commitment schemes

• **setup**(d) → pp, public parameters for polynomials of degree $\leq d$

• **commit**(pp, f, r) → com_f, commitment to $f \in \mathbb{F}_p^{(\leq d)}[X]$

• **eval**: goal: for a given com_f and $x, y \in \mathbb{F}_p$, prove that $f(x) = y$.

Formally: **eval** = (P, V) is a SNARK for:

statement $st = (pp, com_f, x, y)$ with witness = $w = (f, r)$

where $C(st, w) = 0$ iff

$$[f(x) = y \text{ and } f \in \mathbb{F}_p^{(\leq d)}[X] \text{ and } commit(pp, f, r) = com_f]$$
Polynomial commitment schemes

Properties:

• Binding: cannot produce two valid openings \((f_1, r_1), (f_2, r_2)\) for \(\text{com}_f\).

• eval is an argument of knowledge (can extract \((f, r)\) from a successful prover)

• optional:
 • commitment is hiding
 • eval is zero knowledge
Constructing polynomial commitments

Not today ... (see readings or CS355)

Properties of the best ones:

• transparent setup: no secret randomness in setup

• com_f is constant size (a single group element)

• eval proof size for $f \in \mathbb{F}_p^{(\leq d)}[X]$ is $O(\log d)$ group elements

• eval verify time is $O(\log d)$ Prover time: $O(d)$
Goal: polynomial commitment scheme \Rightarrow SNARK for a general circuit $C(x, w)$.

... done using a polynomial-IOP

Fix an arithmetic circuit $C(x, w)$. Let $x \in \mathbb{F}_p^n$.

Poly-IOP: a proof system that proves $\exists w : C(x, w) = 0$ as follows:
(2) Polynomial IOP

Prover $P(x, w)$

- $f_1 \in \mathbb{F}_p^{(\leq d)} [X]$
- $r_1 \leftarrow \mathbb{F}_p$

Verifier $V(x)$

- $r_1 \leftarrow \mathbb{F}_p$
- $f_2 \in \mathbb{F}_p^{(\leq d)} [X]$
- $r_2 \leftarrow \mathbb{F}_p$

- \vdots

- $r_{t-1} \leftarrow \mathbb{F}_p$
- $f_t \in \mathbb{F}_p^{(\leq d)} [X]$
- verify$f_1, \ldots, f_t(r_1, \ldots, r_{t-1})$

can evaluate f_i at any x in \mathbb{F}_p
Properties

• complete: if $\exists w: C(x, w) = 0$ then verifier always accepts

• Soundness or proof of knowledge: (informal) Let $x \in \mathbb{F}_p^n$. P^*: a prover that convinces the verifier with prob. $\geq 1/10^6$ then there is an efficient extractor E s.t.

$$\Pr[E(x, f_1, r_1, \ldots, r_{t-1}, f_t) = w \text{ s.t. } C(x, w) = 0] \geq 1/10^6$$

• Optional: zero knowledge
The resulting SNARK

Poly-IOP params: #polynomials = t, # eval queries in verify = q

The SNARK:
• During interactive phase of poly-IOP: send t poly commitments
• During poly-IOP verify: run poly-commit eval protocol q times
• Use Fiat-Shamir to make the proof system non-interactive

Length of SNARK proof: t poly-commits + q eval proofs
SNARK verify time: q poly eval proof verifications + time(IOP-verify)
SNARK prover time: t poly commits + time(IOP-prover)
Constructing a Poly-IOP

First some useful tricks ...

The fundamental theorem of algebra: for \(0 \neq f \in \mathbb{F}_p^{(\leq d)}[X]\)

\[
\text{for } r \leftarrow \mathbb{F}_p : \quad \Pr[f(r) = 0] \leq d/p
\]

\[\Rightarrow\] suppose \(p \approx 2^{256}\) and \(d \leq 2^{40}\) then \(d/p\) is negligible

\[\Rightarrow\] for \(r \leftarrow \mathbb{F}_p\), if \(f(r) = 0\) then \(f\) is identically zero w.h.p

\[\Rightarrow\] simple zero test for a committed polynomial
Some useful gadgets

Let $\omega \in \mathbb{F}_p$ be a primitive k-th root of unity $(\omega^k = 1)$
Set $H := \{1, \omega, \omega^2, ..., \omega^{k-1}\}$.

Let $f \in \mathbb{F}_p^{(\leq d)}[X]$ and $b, c \in \mathbb{F}_p$.

Want poly-IOPs for the following tasks:

Task 1 (zero-test): prove that f is identically zero on H

Task 2 (sum-check): prove that $\sum_{a \in H} f(a) = b$

Task 3 (prod-check): prove that $\prod_{a \in H} f(a) = c$
Zero test on H

$\mathbb{H} = \{1, \omega, \omega^2, \ldots, \omega^{k-1}\}$

Prover $P(f, \bot)$

$q(X) \leftarrow f(X)/(X^k - 1)$

$q \in \mathbb{F}_p^{(\leq d)}[X]$

Verifier $V(f)$

$r \leftarrow \mathbb{F}_p$

Learn $q(r), f(r)$

If f is zero on H then q is a polynomial

Accept if $f(r) \equiv q(r) \cdot (r^k - 1)$

(implies that $f(X) = q(X)(X^k - 1)$)

Thm: this protocol is complete and sound, assuming d/p is negligible.

Verifier time: $O(\log d)$ and one eval verify
Product check on H: $\prod_{a \in H} f(a) = 1$

Let $t \in \mathbb{F}_p^{(\leq k)}[X]$ be the degree-d polynomial:

$t(1) = f(1), \quad t(\omega^s) = \prod_{i=1}^{s} f(\omega^i) \quad$ for $s = 1, \ldots, k - 1$

Then $t(\omega^{k-1}) = \prod_{a \in H} f(a) = 1$

and $t(\omega \cdot x) = t(x) \cdot f(\omega \cdot x)$ for all $x \in H$ (including $x = \omega^{k-1}$)

Lemma: if

1. $t(\omega^{k-1}) = 1$ and
2. $t(\omega \cdot x) - t(x) \cdot f(\omega \cdot x) = 0$ for all $x \in H$

then $\prod_{a \in H} f(a) = 1$
Product check on H

Prover P((f, c), ⊥)

- construct \(t(X) \in \mathbb{F}_p^{(\leq k)} \), \(t_1(X) = t(\omega \cdot X) - t(X) \cdot f(\omega \cdot X) \)
- and \(q(X) = t_1(X)/(X^k - 1) \in \mathbb{F}_p^{(\leq k)} \)

Verifier V(\(f \))

- \(r \leftarrow \mathbb{F}_p \)
- learn \(t(\omega^{k-1}), t(r), t(\omega r), q(r), f(\omega r) \)
- eval \(t(X) \) at \(\omega^{k-1}, r, \omega r \)
- eval \(q(X) \) at \(r \), and \(f(X) \) at \(\omega r \)

- accept if \(t(\omega^{k-1}) \equiv 1 \) and
 \[
 t(\omega r) - t(r)f(\omega r) \equiv q(r) \cdot (r^k - 1)
 \]

- \(t_1(H) = 0 : \)
PLONK: a poly-IOP for a general circuit $C(x, w)$

Step 1: compile circuit to a sequence of ops (gate fan-in = 2)

\[(x_1 + x_2)(x_2 + w_1)\]

Program P

- 0: $\text{inp}_1, \text{inp}_2 : +$
- 1: $\text{inp}_2, \text{inp}_3 : +$
- 2: $\text{out}_0, \text{out}_1 : \times$

(topological sort of gates)
Step 2: Let $d = 3 |C| + |I|$ and $H = \{ 1, \omega, \omega^2, ..., \omega^{d-1} \}$

$|C|$ = total # of gates in C, $|I| = |I_x| + |I_w|$ = # inputs to C

- encode the x-inputs to the circuit in a polynomial $v \in \mathbb{F}_p^{(\leq |I_x|)}[X]$ for $j = 1, ..., |I_x|$: $v(\omega^{-j}) = \text{input #j}$

- constructing $v(X)$ takes time proportional to the size of the input

- Let $H_{\text{inp}} = \{ \omega^{-1}, \omega^{-2}, ..., \omega^{-|I_x|} \}$ (points encoding the input)
Encoding the circuit internal values

The plan: (prover uses FFT to compute coefficients of P in time $d \log_2 d$)

Define a polynomial $P \in \mathbb{F}_p^{(\leq d)}[X]$ such that $\forall l = 0, \ldots, |C| - 1$:

- $P(\omega^{3l})$: left input to gate $\#l$
- $P(\omega^{3l+1})$: right input to gate $\#l$
- $P(\omega^{3l+2})$: output of gate $\#l$

and $P(\omega^{-j}) = $ input $\#j$ for $j = 1, \ldots, |I|$ (all inputs)

example: $x_1 = 5, x_2 = 6, w_1 = 1$

$\omega^{-1}, \omega^{-2}, \omega^{-3}$	5, 6, 1
$\omega^0, \omega^1, \omega^2$	5, 6, 11
$\omega^3, \omega^4, \omega^5$	6, 1, 7
$\omega^6, \omega^7, \omega^8$	11, 7, 77
Step 3: encode gate types using a selector polynomial $S(X)$

Define $S(X) \in \mathbb{F}_p^{(\leq d)}[X]$ such that $\forall \ l = 0, \ldots, |C| - 1$:

$S(\omega^{3l}) = 1$ if gate $\#l$ is an addition gate

$S(\omega^{3l}) = 0$ if gate $\#l$ is a multiplication gate

Then, $\forall \ x \in H_{\text{gates}} = \{1, \omega^3, \omega^6, \omega^9, \ldots, \omega^{3(|C| - 1)}\}$:

$$S(x) \cdot [P(x) + P(\omega x)] + (1 - S(x)) \cdot P(x) \cdot P(\omega x) = P(\omega^2 x)$$
Step 4: encode the wires of \(C \):

\[
\begin{align*}
P(\omega^{-2}) &= P(\omega^1) = P(\omega^3) \\
P(\omega^{-1}) &= P(\omega^0) \\
P(\omega^2) &= P(\omega^6) \\
P(\omega^{-3}) &= P(\omega^4)
\end{align*}
\]

Define a polynomial \(W : H \rightarrow H \) that implements a rotation:

\[
W(\omega^{-2}, \omega^1, \omega^3) = (\omega^1, \omega^3, \omega^{-2}) \quad , \quad W(\omega^{-1}, \omega^0) = (\omega^0, \omega^{-1}) \quad , \quad ...
\]

Fact: \(\forall x \in H : P(x) = P(W(x)) \quad \Rightarrow \quad \text{wire constraints are satisfied} \)
Problem: the constraint \(P(x) = P(W(x)) \) has degree \(d^2 \)

\[\Rightarrow \text{prover would need to manipulate polynomials of degree } d^2 \]

\[\Rightarrow \text{quadratic time prover}!! \text{ (goal: linear time prover)} \]

Cute trick: use prod-check proof to reduce this to a constraint of linear degree
Reducing wiring check to a linear degree

Lemma: \(P(x) = P(W(x)) \) for all \(x \in H \) if and only if \(L(Y, Z) \equiv 1 \)

where \(L(Y, Z) = \prod_{x \in H} \frac{P(x) + y \cdot W(x) + z}{P(x) + y \cdot x + z} \)

To prove that \(L(Y, Z) \equiv 1 \) do:

1. verifier chooses random \(y, z \in \mathbb{F}_p \)
2. prover builds \(L_1(X) \) s.t. \(L_1(x) = \frac{P(x) + y \cdot W(x) + z}{P(x) + y \cdot x + z} \) for all \(x \in H \)
3. run prod-check to prove \(\prod_{x \in H} L_1(x) = 1 \)
4. run zero-test to prove \(L_2(x) = 0 \) for all \(x \in H \) where \(L_2(x) = (P(x) + y \cdot x + z) L_1(x) - (P(x) + y \cdot W(x) + z) \)
The final \((S, P, V)\) SNARK

Setup\((C)\): \(S_v = (\) poly commitment to \(S(X)\) and \(W(X)\) \()\)

Prover \(P(x, w)\)

Build \(P(X) \in \mathbb{F}_p^{(\leq d)}[X]\)

Prove:

 Gates: \((1)\) \(S(x) \cdot [P(x) + P(\omega x)] + (1 - S(x)) \cdot P(x) \cdot P(\omega x) - P(\omega^2 x) = 0 \quad \forall x \in H_{\text{gates}}\)

 Inputs: \((2)\) \(P(x) - v(x) = 0 \quad \forall x \in H_{\text{inp}}\)

 Wires: \((3)\) \(P(x) - P(W(x)) = 0 \quad \forall x \in H\)
Many extensions ...

- Can handle circuits with more general gates than $+$ and \times
 - PLOOKUP: efficient SNARK for circuits with lookup tables

- The SNARK can easily be made into a zkSNARK

- Main challenge: reduce prover time
Next lecture: recursive SNARKs