Building a SNARK

Dan Boneh
Recap: high-level goals

• Private transactions on a public blockchain

• Blockchain scaling, such as proof-based Rollup

• Privately prove compliance, such as a private proof of solvency
Recap: non-interactive proof systems
(for NP)

Public arithmetic circuit: \(C(x, w) \rightarrow \mathbb{F}_p \)

Let \(x \in \mathbb{F}_p^n \). Two standard goals for prover P:

1. **Soundness**: convince Verifier that \(\exists w \) s.t. \(C(x, w) = 0 \)

 (e.g., \(\exists w \) such that \(H(w) = x \) and \(0 < w < 2^{60} \))

2. **Knowledge**: convince Verifier that P “knows” \(w \) s.t. \(C(x, w) = 0 \)

 (e.g., P knows a \(w \) such that \(H(w) = x \))
A non-interactive proof system is a triple \((S, P, V)\):

- \(S(C) \rightarrow\) public parameters \((S_p, S_v)\) for prover and verifier

 \((S_p, S_v)\) is called a reference string

- \(P(S_p, x, w) \rightarrow\) proof \(\pi\)

- \(V(S_v, x, \pi) \rightarrow\) accept or reject
proof systems: properties (informal)

Prover \(P(pp, x, w) \)
Verifier \(V(pp, x, \pi) \)

\[\text{proof } \pi \]

accept or reject

Complete: \(\forall x, w: C(x, w) = 0 \implies V(S_v, x, P(S_p, x, w)) = \text{accept} \)

Proof of knowledge: \(V \) accepts \(\implies P \) “knows” \(w \) s.t. \(C(x, w) = 0 \)

in some cases, **soundness** is sufficient: \(\exists w \) s.t. \(C(x, w) = 0 \)

Zero knowledge (optional): \((x, \pi) \) “reveals nothing” about \(w \)
SNARK: succinct argument of knowledge

Goal: P wants to show that it knows w s.t. $C(x, w) = 0$

Succinct:

- Proof π should be short [i.e., $|\pi| = O(\log(|C|), \lambda)$]
- Verifying π should be fast [i.e., time(V) = $O(|x|, \log(|C|), \lambda)$]

note: if SNARK is zero-knowledge, then called a zkSNARK
A simple PCP-based SNARK

[Kilian’92, Micali’94]
A simple construction: PCP-based SNARK

The PCP theorem: Let \(C(x, w) \) be an arithmetic circuit.
there is a proof system that for every \(x \) proves \(\exists w: C(x, w) = 0 \)
as follows:

<table>
<thead>
<tr>
<th>Prover (P(S_p, x, w))</th>
<th>Verifier (V(S_v, x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>proof (\pi)</td>
<td>read only (o(\lambda)) bits of (\pi), output accept or reject</td>
</tr>
</tbody>
</table>

V always accepts valid proof. If no \(w \), then V rejects with high prob.

size of proof is \(poly(|C|) \). (not succinct)
Converting a PCP proof to a SNARK

Prover \(P(S_p, x, w) \)

Verifier \(V(S_v, x) \)

- Merkle root \(h \)
- Open \(k \) positions of \(\pi \) (\(k = O(\lambda) \))
- \(k \) opening and Merkle proofs
- Output accept or reject

Verifier sees \(O(\lambda \log |C|) \) data \(\Rightarrow \) succinct proof.

Problem: interactive
Making the proof non-interactive

The **Fiat-Shamir heuristic:**

- public-coin interactive protocol \Rightarrow non-interactive protocol

 public coin: all verifier randomness is public (no secrets)

Prover $P(S_p, x, w)$
Verifier $V(S_v, x)$

1. Prover sends r to Verifier
2. Verifier chooses random bits r and sends $msg2$ to Prover
3. Prover responds with $msg1$ and accepts or rejects
Making the proof non-interactive

Fiat-Shamir heuristic: \(H: M \rightarrow R \) a cryptographic hash function

- idea: prover generates random bits on its own (!)

<table>
<thead>
<tr>
<th>Prover (P(S_p, x, w))</th>
<th>Verifier (V(S_v, x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>generate msg1</td>
<td></td>
</tr>
<tr>
<td>(r \leftarrow H(x, \text{msg1}))</td>
<td>(\pi = (\text{msg1}, \text{msg2}))</td>
</tr>
<tr>
<td>generate msg2</td>
<td>(</td>
</tr>
<tr>
<td></td>
<td>(r \leftarrow H(x, \text{msg1}))</td>
</tr>
<tr>
<td></td>
<td>accept or reject</td>
</tr>
</tbody>
</table>

Thm: this is a secure SNARK assuming \(H \) is a random oracle
Let’s build an extractor E for the interactive protocol:

- After prover commits to Merkle root of proof

 E asks prover to open many batches of $k = O(\lambda)$ positions of π (by rewinding prover)

- E fails to extract cell #j of π if

 (1) prover produces a false Merkle proofs (efficient prover cannot), or

 (2) prover fails (i.e., verifier rejects) whenever j is in batch to open:

 \[
 \Pr[\text{prover fails}] \geq \Pr[j \text{ in batch }] = 1 - (1 - 1/|\pi|)^k .
 \]

 so: this cannot happen if k is sufficiently large

$\Rightarrow E$ extracts entire proof π. Once π is known, E can obtain w from π.
Are we done?

Simple transparent SNARK from the PCP theorem
• Use Fiat-Shamir heuristic to make non-interactive
• We will apply Fiat-Shamir in many other settings

The bad news: an impractical SNARK --- Prover time too high

Better SNARKs: Goal: $\text{Time(Prover)} = \tilde{O}(|C|)$
Building an efficient SNARK
Many SNARKs are built in two steps:

- Polynomial commitment scheme
- Polynomial interactive oracle proofs (poly-IOP)

(zk)SNARK for general circuits
Recall: commitments

Two algorithms:

• $commit(m, r) \rightarrow com$

• $verify(m, com, r) \rightarrow$ accept or reject

Properties:

• binding: cannot produce two valid openings for com.

• hiding: com reveals nothing about committed data
(1) Polynomial commitment schemes

Notation:

Fix a finite field: \(\mathbb{F}_p = \{0, 1, \ldots, p - 1\} \)

\(\mathbb{F}_p^{(\leq d)}[X] \): all polynomials in \(\mathbb{F}_p[X] \) of degree \(\leq d \).
(1) Polynomial commitment schemes

- **setup**(d) \rightarrow pp, public parameters for polynomials of degree $\leq d$
- **commit**(pp, f, r) \rightarrow com_f commitment to $f \in \mathbb{F}_p^{(\leq d)}[X]$
- **eval**: goal: for a given com_f and $x, y \in \mathbb{F}_p$, prove that $f(x) = y$.

Formally: $eval = (P, V)$ is a SNARK for:

statement $st = (pp, com_f, x, y)$ with witness $w = (f, r)$

where $C(st, w) = 0$ iff

$$[f(x) = y \text{ and } f \in \mathbb{F}_p^{(\leq d)}[X] \text{ and } commit(pp, f, r) = com_f]$$
(1) Polynomial commitment schemes

Properties:

- Binding: cannot produce two valid openings \((f_1, r_1), (f_2, r_2)\) for \(\text{com}_f\).
- eval is an argument of knowledge (can extract \((f, r)\) from a successful prover)
- optional:
 - commitment is hiding
 - eval is zero knowledge
Constructing polynomial commitments

Not today ... (see readings or CS355)

Properties of the best ones:

• transparent setup: no secret randomness in setup
• com_f is constant size (a single group element)
• eval proof size for $f \in \mathbb{F}_p^{\leq d}[X]$ is $O(\log d)$ group elements
• eval verify time is $O(\log d)$
• Prover time: $O(d)$
Goal: polynomial commitment scheme ⇒ SNARK for a general circuit $C(x, w)$.

... done using a polynomial-IOP

Fix an arithmetic circuit $C(x, w)$. Let $x \in \mathbb{F}_p^n$.

Poly-IOP: a proof system that proves $\exists w: C(x, w) = 0$ as follows:
(2) Polynomial IOP

Prover $P(x, w)$

- $f_1 \in \mathbb{F}_p^{(\leq d)}[X]$
- $r_1 \in \mathbb{F}_p$
- $f_2 \in \mathbb{F}_p^{(\leq d)}[X]$
- $r_2 \in \mathbb{F}_p$
- \[\vdots \]
- $f_t \in \mathbb{F}_p^{(\leq d)}[X]$
- $r_{t-1} \in \mathbb{F}_p$

Verifier $V(x)$

- $r_1 \leftarrow \mathbb{F}_p$
- $r_2 \leftarrow \mathbb{F}_p$
- $r_{t-1} \leftarrow \mathbb{F}_p$

verify $f_1, \ldots, f_t(r_1, \ldots, r_{t-1})$

can evaluate f_i at any x in \mathbb{F}_p
Properties

• complete: if $\exists w: C(x, w) = 0$ then verifier always accepts

• Soundness or proof of knowledge: (informal) Let $x \in \mathbb{F}_p^n$. P*: a prover that convinces the verifier with prob. $\geq 1/10^6$ then there is an efficient extractor E s.t.

$$\Pr\left[E(x, f_1, r_1, \ldots, r_{t-1}, f_t) = w \text{ s.t. } C(x, w) = 0\right] \geq 1/10^6$$

• Optional: zero knowledge
The resulting SNARK

Poly-IOP params: \#polynomials = t, \# eval queries in verify = q

The SNARK:

• During interactive phase of poly-IOP: send t poly commitments
• During poly-IOP verify: run poly-commit eval protocol q times
• Use Fiat-Shamir to make the proof system non-interactive

Length of SNARK proof: t poly-commits + q eval proofs
SNARK verify time: q poly eval proof verifications + time(IOP-verify)
SNARK prover time: t poly commits + time(IOP-prover)
Constructing a Poly-IOP

First some useful tricks ...

The fundamental theorem of algebra: for \(0 \neq f \in \mathbb{F}_p^{(\leq d)} [X] \)

\[
\text{for } r \leftarrow \mathbb{F}_p : \quad \Pr[f(r) = 0] \leq d/p
\]

\[\Rightarrow\] suppose \(p \approx 2^{256} \) and \(d \leq 2^{40} \) then \(d/p \) is negligible

\[\Rightarrow\] for \(r \leftarrow \mathbb{F}_p \), if \(f(r) = 0 \) then \(f \) is identically zero w.h.p

\[\Rightarrow\] simple zero test for a committed polynomial
Some useful gadgets

Let \(\omega \in \mathbb{F}_p \) be a primitive \(k \)-th root of unity \((\omega^k = 1) \)

Set \(H := \{ 1, \omega, \omega^2, ..., \omega^{k-1} \} \).

Let \(f \in \mathbb{F}_p(\leq d)[X] \) and \(b, c \in \mathbb{F}_p \). \((d \geq k) \)

Want poly-IOPs for the following tasks:

Task 1 (zero-test): prove that \(f \) is identically zero on \(H \)

Task 2 (sum-check): prove that \(\sum_{a \in H} f(a) = b \)

Task 3 (prod-check): prove that \(\prod_{a \in H} f(a) = c \)
Zero test on H ($H = \{ 1, \omega, \omega^2, \ldots, \omega^{k-1} \}$)

Prover $P(f, \bot)$

$q(X) \leftarrow f(X)/(X^k - 1)$

- $q \in \mathbb{F}_{p^{\leq d}}[X]$ (if f is zero on H then $f(X)$ is divisible by $X^k - 1$)

Verifier $V(f)$

$r \leftarrow \mathbb{F}_p$

- eval $q(X)$ and $f(X)$ at r
- learn $q(r), f(r)$

accept if $f(r) \equiv q(r) \cdot (r^k - 1)$

(implies that $f(X) = q(X)(X^k - 1)$)

Thm: this protocol is complete and sound, assuming d/p is negligible.

Verifier time: $O(\log k)$ and two eval verify (but can be done in one)
Product check on H: $\prod_{a \in H} f(a) = 1$

Let $t \in \mathbb{F}_p^{(\leq k)}[X]$ be the degree-d polynomial:

$$t(1) = f(1), \quad t(\omega^s) = \prod_{i=0}^{s} f(\omega^i) \quad \text{for } s = 1, \ldots, k - 1$$

Then $t(\omega^{k-1}) = \prod_{a \in H} f(a) = 1$

and $t(\omega \cdot x) = t(x) \cdot f(\omega \cdot x)$ for all $x \in H$ (including $x = \omega^{k-1}$)

Lemma: if

1. $t(\omega^{k-1}) = 1$ and
2. $t(\omega \cdot x) - t(x) \cdot f(\omega \cdot x) = 0$ for all $x \in H$

then $\prod_{a \in H} f(a) = 1$
Product check on H

Prover $P((f, c), \bot)$

construct $t(X) \in \mathbb{F}_p^{(\leq k)}$, $t_1(X) = t(\omega \cdot X) - t(X) \cdot f(\omega \cdot X)$

and \(q(X) = t_1(X)/(X^k - 1) \in \mathbb{F}_p^{(\leq k)} \)

$$q, t \in \mathbb{F}_p^{(\leq k)} [X]$$

Verifier $V([f])$

\(r \leftarrow \mathbb{F}_p \)

learn \(t(\omega^{k-1}), t(r), t(\omega r), q(r), f(\omega r) \)

eval \(t(X) \) at \(\omega^{k-1}, r, \omega r \)

eval \(q(X) \) at \(r \), and \(f(X) \) at \(\omega r \)

\(t_1(H) = 0 : t(\omega^{k-1}) \equiv 1 \) and \(t(\omega r) - t(r)f(\omega r) \equiv q(r) \cdot (r^k - 1) \)

accept
PLONK: a poly-IOP for a general circuit $C(x, w)$

Step 1: compile circuit to a sequence of ops (gate fan-in = 2)

$$\begin{align*}
(x_1 + x_2)(x_2 + w_1)
\end{align*}$$

Program P

$\begin{align*}
0: & \text{ inp}_1, \text{ inp}_2 : + \\
1: & \text{ inp}_2, \text{ inp}_3 : + \\
2: & \text{ out}_0, \text{ out}_1 : \times
\end{align*}$

(topological sort of gates)
Step 2: let $d = 3 |C| + |I|$ and $H = \{ 1, \omega, \omega^2, \ldots, \omega^{d-1} \}$

$|C| = \text{total # of gates in } C$, $|I| = |I_x| + |I_w| = \# \text{ inputs to } C$

- encode the x-inputs to the circuit in a polynomial $v \in \mathbb{F}_p^{(\leq |I_x|)}[X]$ for $j = 1, \ldots, |I_x|$: $v(\omega^{-j}) = \text{input } #j$

- constructing $v(X)$ takes time proportional to the size of the input

- Let $H_{\text{inp}} = \{ \omega^{-1}, \omega^{-2}, \ldots, \omega^{-|I_x|} \}$ (points encoding the input)
Encoding the circuit internal values
(prover uses FFT to compute coefficients of P in time $d \log_2 d$)

The plan:

Define a polynomial $P \in \mathbb{F}_p^{(\leq d)} [X]$ such that $\forall l = 0, \ldots, |C| - 1$:

- $P(\omega^{3l})$: left input to gate #l
- $P(\omega^{3l+1})$: right input to gate #l
- $P(\omega^{3l+2})$: output of gate #l

and $P(\omega^{-j}) = \text{input } j$ for $j = 1, \ldots, |I|$

(all inputs)

example: $x_1 = 5$, $x_2 = 6$, $w_1 = 1$

ω^{-1}, ω^{-2}, ω^{-3}: 5, 6, 1

0: ω^0, ω^1, ω^2: 5, 6, 11

1: ω^3, ω^4, ω^5: 6, 1, 7

2: ω^6, ω^7, ω^8: 11, 7, 77
Encoding the gates of the circuit

Step 3: encode gate types using a *selector* polynomial $S(X)$

Define $S(X) \in \mathbb{F}_p^{(\leq d)}[X]$ such that $\forall \ l = 0, \ldots, |C| - 1$:

- $S(\omega^{3l}) = 1$ if gate #l is an addition gate
- $S(\omega^{3l}) = 0$ if gate #l is a multiplication gate

Then, $\forall \ x \in H_{\text{gates}} = \{ 1, \omega^3, \omega^6, \omega^9, \ldots, \omega^{3(|C|-1)} \}$:

$$S(x) \cdot [P(x) + P(\omega x)] + (1 - S(x)) \cdot P(x) \cdot P(\omega x) = P(\omega^2 x)$$
Encoding the circuit wiring

Step 4: encode the wires of C:

\[
\begin{align*}
P(\omega^{-2}) &= P(\omega^1) = P(\omega^3) \\
P(\omega^{-1}) &= P(\omega^0) \\
P(\omega^2) &= P(\omega^6) \\
P(\omega^{-3}) &= P(\omega^4)
\end{align*}
\]

Define a polynomial $W : H \rightarrow H$ that implements a rotation:

\[
W(\omega^{-2}, \omega^1, \omega^3) = (\omega^1, \omega^3, \omega^{-2}) , \quad W(\omega^{-1}, \omega^0) = (\omega^0, \omega^{-1}), \ldots
\]

Lemma: $\forall x \in H: P(x) = P(W(x)) \Rightarrow$ wire constraints are satisfied

Example: $x_1 = 5, x_2 = 6, w_1 = 1$

\[
\begin{align*}
\omega^{-1}, \omega^{-2}, \omega^{-3} : & 5, 6, 1 \\
\omega^0, \omega^1, \omega^2 : & 5, 6, 11 \\
\omega^3, \omega^4, \omega^5 : & 6, 1, 7 \\
\omega^6, \omega^7, \omega^8 : & 11, 7, 77
\end{align*}
\]
Problem: the constraint \(P(x) = P(W(x)) \) has degree \(d^2 \)

\(\Rightarrow \) prover would need to manipulate polynomials of degree \(d^2 \)

\(\Rightarrow \) quadratic time prover !! (goal: linear time prover)

Cute trick: use prod-check proof to reduce this to a constraint of linear degree
Reducing wiring check to a linear degree

Lemma: \(P(x) = P(W(x)) \) for all \(x \in \mathbb{H} \) if and only if \(L(Y, Z) \equiv 1 \),

where \(L(Y, Z) = \prod_{x \in \mathbb{H}} \frac{P(x) + y \cdot W(x) + z}{P(x) + y \cdot x + z} \)

To prove that \(L(Y, Z) \equiv 1 \) do:

1. verifier chooses random \(y, z \in \mathbb{F}_p \)
2. prover builds \(L_1(X) \) s.t. \(L_1(x) = \frac{P(x) + y \cdot W(x) + z}{P(x) + y \cdot x + z} \) for all \(x \in \mathbb{H} \)
3. run prod-check to prove \(\prod_{x \in \mathbb{H}} L_1(x) = 1 \)
4. validate \(L_1 \): run zero-test to prove \(L_2(x) = 0 \) for all \(x \in \mathbb{H} \) where

\[L_2(x) = (P(x) + y \cdot x + z) L_1(x) - (P(x) + y \cdot W(x) + z) \]
The final (S, P, V) SNARK

Setup(C): $S_v = (\text{poly commitment to } S(X) \text{ and } W(X))$

Prover $P(x, w)$

- Build $P(X) \in \mathbb{F}_p^{(\leq d)}[X]$
- Prove:
 - Gates:
 1. $S(x) \cdot [P(x) + P(\omega x)] + (1 - S(x)) \cdot P(x) \cdot P(\omega x) - P(\omega^2 x) = 0 \quad \forall x \in H_{\text{gates}}$
 - Inputs:
 2. $P(x) - v(x) = 0 \quad \forall x \in H_{\text{inp}}$
 - Wires:
 3. $P(x) - P(W(x)) = 0 \quad \forall x \in H$
 - Output:
 4. $P(\omega^3 |C|^{-1}) = 0 \quad (\text{output of last gate} = 0)$

Verifier $V(S_v, x)$

- Build $v(X) \in \mathbb{F}_p^{(\leq |I_X|)}[X]$
Many extensions ...

• Can handle circuits with more general gates than + and ×
 • PLOOKUP: efficient SNARK for circuits with lookup tables

• The SNARK can easily be made into a zkSNARK

• Main challenge: reduce prover time
END OF LECTURE

Next lecture: recursive SNARKs