Proof Systems and SNARKs

Dan Boneh
Where we are in the course

- Basics: Consensus protocols and Bitcoin
- Composable decentralized applications (e.g., on Ethereum)

 ⇒ Decentralized Finance (DeFi)

 ⇒ Scaling the blockchain:
 payment channels,
 Rollup (Proof-based or Optimistic),
 faster consensus

Last core topic: **privacy** -- private transactions on a public blockchain
Managing assets on a blockchain: key principles

• **Universal verifiability** of blockchain rules
 ⇒ all data written to the blockchain is public; everyone can verify
 ⇒ added benefit: interoperability between chains

• Assets are **controlled by signature keys**
 ⇒ assets **cannot** be transferred without a valid signature
 (of course, users can choose to custody their keys)
Naïve reasoning:

universal verifiability \Rightarrow blockchain data is public

\Rightarrow all transactions data is public

otherwise, how we can verify Tx?

not quite ...

crypto magic \Rightarrow private Tx on a publicly verifiable blockchain
Public blockchain & universal verifiability

- **Tx data**: encrypted (or committed)
- **Proof** π: zero-knowledge proof that (reveals nothing about Tx data)
 1. plaintext Tx data is consistent with plaintext current state
 2. plaintext new state is correct
Public blockchain & universal verifiability

- **Tx data**: encrypted (or committed)
- **Proof π**: zero-knowledge proof that:
 1. Plaintext Tx data is consistent with plaintext current state
 2. Plaintext new state is correct
Zero Knowledge Proof Systems
(1) arithmetic circuits

- Fix a finite field $\mathbb{F} = \{0, \ldots, p - 1\}$ for some prime $p > 2$.

- **Arithmetic circuit**: $C : \mathbb{F}^n \to \mathbb{F}$
 - directed acyclic graph (DAG) where
 - internal nodes are labeled $+, -, \text{ or } \times$
 - inputs are labeled $1, x_1, \ldots, x_n$
 - defines an n-variate polynomial with an evaluation recipe

- $|C| = \# \text{ multiplication gates in } C$
Boolean circuits as arithmetic circuits

Boolean circuits: circuits with AND, OR, NOT gates

Encoding a boolean circuit as an arithmetic circuit over \mathbb{F}_p:

- $\text{AND}(x, y)$ encoded as $x \cdot y$
- $\text{OR}(x, y)$ encoded as $x + y - x \cdot y$
- $\text{NOT}(x)$ encoded as $1 - x$

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>$\text{OR}(x, y)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Interesting arithmetic circuits

- $C_{\text{hash}}(h, m)$: outputs 0 if $\text{SHA256}(m) = h$, and $\neq 0$ otherwise

$$C_{\text{hash}}(h, m) = (h - \text{SHA256}(m)),$$ \quad |C_{\text{hash}}| \approx 20K \text{ gates}

- $C_{\text{sig}}((pk, m), \sigma)$: output 0 if σ is a valid ECDSA signature of m under pk
Let $x \in \mathbb{F}_p^n$. Two standard goals for prover P:

1. **Soundness**: convince Verifier that $\exists w$ s.t. $C(x, w) = 0$
 (e.g., $\exists w$ such that $[H(w) = x$ and $0 < w < 2^{60}]$)

2. **Knowledge**: convince Verifier that P “knows” w s.t. $C(x, w) = 0$
 (e.g., P knows a w such that $H(w) = x$)
Why can’t prover simply send w to verifier?

- Verifier checks if $C(x, w) = 0$ and accepts if so.

Problems with this:

1. w might be secret: prover cannot reveal w to verifier
2. w might be long: we want a “short” proof
3. computing $C(x, w)$ may be hard: want to minimize Verifier’s work
Non-interactive Proof Systems (for NP)

Public arithmetic circuit: \(C(x, w) \rightarrow \mathbb{F}_p \)

- Public input in \(\mathbb{F}_p^n \)
- Secret witness in \(\mathbb{F}_p^m \)

Setup: \(S(C) \rightarrow \) public parameters \((S_p, S_v)\)

Prover \(P(S_p, x, w) \)
Verifier \(V(S_v, x, \pi) \)

Proof \(\pi \)

Output: accept or reject
A non-interactive proof system is a triple \((S, P, V)\):

• \(S(C) \rightarrow \) public parameters \((S_p, S_v)\) for prover and verifier

• \(P(S_p, x, w) \rightarrow \) proof \(\pi\)

• \(V(S_v, x, \pi) \rightarrow \) accept or reject
proof systems: properties (informal)

Prover $P(pp, x, w)$
Verifier $V(pp, x, \pi)$

π
accept or reject

Complete: $\forall x, w: C(x, w) = 0 \Rightarrow V(S_v, x, P(S_p, x, w)) = \text{accept}$

Proof of knowledge: V accepts $\Rightarrow P$ “knows” w s.t. $C(x, w) = 0$

in some cases, soundness is sufficient: $\exists w$ s.t. $C(x, w) = 0$

Zero knowledge (optional): (x, π) “reveals nothing” about w
(a) Proof/argument of knowledge

Goal: V accepts $\Rightarrow P$ “knows” w s.t. $C(x, w) = 0$

What does it mean to “know” w ??

informal def: P knows w, if w can be “extracted” from P
(a) Proof/argument of knowledge

Formally: \((S, P, V)\) is a proof of knowledge for a circuit \(C\) if for every adversary \(A = (A_0, A_1)\) such that

\[
S(C) \rightarrow (S_p, S_v), \quad (x, st) \leftarrow A_0(S_p), \quad \pi \leftarrow A_1(S_p, x, st):
\]

\[
\Pr[V(S_v, x, \pi) = \text{accept}] > \frac{1}{10^6} \quad \text{(non-negligible)}
\]

there is an efficient extractor \(E\) (that uses \(A_1\) as a black box) s.t.

\[
S(C) \rightarrow (S_p, S_v), \quad (x, st) \leftarrow A_0(S_p), \quad \quad \quad \quad \quad \quad \quad \quad w \leftarrow E(S_p, x, st):
\]

\[
\Pr[C(x, w) = 0] > \frac{1}{10^6} \quad \text{(non-negligible)}
\]

If only for poly. time \(A \Rightarrow (S, P, V)\) is only an argument of knowledge.
Formally: \((S, P, V)\) is a proof of knowledge for a circuit \(C\) if for every adversary \(A = (A_0, A_1)\) such that
\[
S(C) \equiv (S_p, S_v), (x, st) \equiv A_0(S_p), \pi \equiv A_1(S_p, x, st):
\]
\[
\Pr[V(S_v, x, \pi) = \text{accept}] > 1/10 \quad \text{(non-negligible)}
\]
there is an efficient extractor \(E\) (that uses \(A_1\) as a black box) such that
\[
S(C) \equiv (S_p, S_v), (x, st) \equiv A_0(S_p), w \equiv E(S_p, x, st):
\]
\[
\Pr[C(x, w) = 0] > 1/10 \quad \text{(non-negligible)}
\]

Proof: secure against unbounded cheating provers

Argument: secure against polynomial-time cheating provers

If only for poly. time \(A\) \(\Rightarrow (S, P, V)\) is only an argument of knowledge.
(b) Zero knowledge

(S, P, V) is zero knowledge if proof π “reveals nothing” about w

Formally: (S, P, V) is zero knowledge for a circuit C

if there is an efficient simulator Sim,

such that for all $x \in \mathbb{F}_p^n$ s.t. $\exists w: C(x, w) = 0$ the distribution:

$$(S_p, S_v, x, \pi) \quad \text{where} \quad (S_p, S_v) \leftarrow S(C), \quad \pi \leftarrow P(x, w)$$

is indistinguishable from the distribution:

$$(S_p, S_v, x, \pi) \quad \text{where} \quad (S_p, S_v, \pi) \leftarrow Sim(x)$$

key point: $Sim(x)$ simulates proof π without knowledge of w
(3) Succinct arguments: SNARKs

Goal: P wants to show that it knows \(w \) s.t. \(C(x, w) = 0 \)

Succinct:

- Proof \(\pi \) should be **short** \[\text{i.e., } |\pi| = O(\log(|C|), \lambda) \]
- Verifying \(\pi \) should be **fast** \[\text{i.e., } \text{time}(V) = O(|x|, \log(|C|), \lambda) \]

Note: if SNARK is zero-knowledge, then called a **zkSNARK**
Goal: P wants to show that it knows \(w \) s.t. \(C(x, w) = 1 \)

verifier cannot read \(C \) !! Instead, V relies on setup(\(C \)) to pre-process (summarize) \(C \) in \(S_v \)

note: if SNARK is zero-knowledge, then called a zkSNARK
An example

Prover says: I know \((x_1, ..., x_n) \in X\) such that \(H(x_1, ..., x_n) = y\)

SNARK: size(\(\pi\)) and VerifyTime(\(\pi\)) should be \(O(\log n)\)!!
An example

How is this possible???

SNARK: $\text{size}(\pi)$ and $\text{VerifyTime}(\pi)$ should be $O(\log n)$!!

Prover

Statement: y
Witness: x_1, \ldots, x_n

Proof π

Verifier

Statement: y

Accept or reject
Types of pre-processing Setup

Recall setup for circuit C: $S(C) \rightarrow$ public parameters (S_p, S_v)

Types of setup:

trusted setup per circuit: $S(C)$ uses data that must be kept secret

compromised trusted setup \Rightarrow can prove false statements

updatable universal trusted setup: (S_p, S_v) can be updated by anyone

transparent: $S()$ does not use secret data (no trusted setup)
Significant progress in recent years

• Kilian’92, Micali’94: succinct transparent arguments from PCP
 • impractical prover time

• GGPR’13, Groth’16, …: linear prover time, constant size proof \(O(1)\)
 • trusted setup per circuit (setup alg. uses secret randomness)
 • compromised setup \(\Rightarrow\) proofs of false statements

• Sonic’19, Marlin’19, Plonk’19, … : universal trusted setup

• DARK’19, Halo’19, STARK, … : no trusted setup (transparent)
<table>
<thead>
<tr>
<th>Types of SNARKs (partial list)</th>
</tr>
</thead>
</table>

| | size of $|\pi|$ | size of $|S_p|$ | verifier time | trusted setup? |
|----------------|------------|----------------|---------------|----------------|
| Groth’16 | O(1) | O($|C|$) | O(1) | yes/per circuit |
| PLONK/MARLIN | O(1) | O($|C|$) | O(1) | yes/updatable |
| Bulletproofs | O($\log|C|$) | O(1) | O($|C|$) | no |
| STARK | O($\log|C|$) | O(1) | O($\log|C|$) | no |
| DARK | O($\log|C|$) | O(1) | O($\log|C|$) | no |
A typical SNARK software system

- **DSL program**: Circom, ZoKrates, ...
- **SNARK friendly format**: R1CS, AIR, TurboPlonk

SNARK backend

Proof π

- $x, \text{witness}$
- accept/reject

CPU heavy

setup

(S_p, S_v)

verifier

compiler
Goal: prove knowledge of a hash (SHA256) preimage of $x \in \{0,1\}^{256}$

- For a public x, prover knows $w \in \mathbb{F}_p$ such that $\text{SHA256}(w) = x$.
- \mathbb{F}_p is a 254-bit prime field

```python
def main(field x[2], private field w) -> (field):
    h = sha256packed(w)
    h[0] == x[0]  # check top 128 bits
    h[1] == x[1]  # check bottom 128 bits
    return 1
```

Compiled into an arithmetic circuits (R1CS) over \mathbb{F}_p
zkSNARK applications
Blockchain Applications

Scalability:
- SNARK Rollup (zkSNARK for privacy from public)

Privacy:
- Private Tx on a public blockchain
 - Confidential transactions
 - Zcash

Compliance:
- Proving solvency in zero-knowledge
- Zero-knowledge taxes
A simple PCP-based SNARK

[Kilian’92, Micali’94]
A simple construction: PCP-based SNARK

The PCP theorem: Let \(C(x, w) \) be a circuit where \(x \in \mathbb{F}_p^n \).

there is a proof system that for every \(x \) proves \(\exists w: C(x, w) = 0 \) as follows:

Prover \(P(S_p, x, w) \)

- proof \(\pi \)

Verifier \(V(S_v, x) \)

- read only \(o(\lambda) \) bits of \(\pi \),
- output accept or reject

V always accepts valid proof. If no \(w \), then V rejects with high prob.

size of proof is \(poly(|C|) \). (not succinct)
Converting a PCP proof to a SNARK

Prover $P(S_p, x, w)$

Verifier $V(S_v, x)$

Merkle root h

open $O(\lambda)$ positions of π

$O(\lambda)$ opening and Merkle proofs

Verifier sees $O(\lambda \log |C|)$ data \Rightarrow succinct proof.

Problem: interactive
Making the proof non-interactive

The Fiat-Shamir heuristic:

- public-coin interactive protocol \Rightarrow non-interactive protocol

 public coin: all verifier randomness is public (no secrets)

Prover $P(S_p, x, w)$

Verifier $V(S_v, x)$

msg1

msg1

r

msg2

choose random bits r

accept or reject
Making the proof non-interactive

Fiat-Shamir heuristic: \(H: M \rightarrow R \) a cryptographic hash function

- idea: prover generates random bits on its own (!)

\[
\begin{align*}
\text{Prover } P(S_p, x, w) & \quad \text{Verifier } V(S_v, x) \\
\text{generate msg1} & \quad \pi = (\text{msg1, msg2}) \\
r \leftarrow H(x, \text{msg1}) & \quad |\pi| = O(\lambda \log |C|) \\
generate msg2 & \quad r \leftarrow H(x, \text{msg1}) \\
\text{accept or reject} & \\
\end{align*}
\]

Thm: this is a secure SNARK assuming \(H \) is a random oracle
Are we done?

Simple transparent SNARK from the PCP theorem

• Use Fiat-Shamir heuristic to make non-interactive
• We will apply Fiat-Shamir in many other settings

The bad news: an impractical SNARK --- Prover time too high

Better SNARKs: next lecture! Goal: Time(Prover) = O(|C|)
Next lecture: zkSNARK applications