Recap: The Consensus Problem

- "State Machine Replication" on N servers
- Stream of transactions: $tx_1, tx_2, ...$
- For $i = 1, ..., n$: $L_i(t)$ is a list of confirmed Tx at server i at time t
- **Goal**: Protocol that satisfies two properties:
 - ✓ Consistency
 - ✓ Liveness
Recap: The Consensus Problem

Consistency
For all servers $i, j \in [N]$ and times t, t':
Either list $L_i(t)$ is a prefix of $L_j(t)$ or vice versa
If $t < t'$ then $L_i(t) < L_i(t')$

Liveness
Exists function T such that: if any honest server receives tx at time t then $\forall i \ L_i(t + T(\Delta))$ contains tx
$\Delta = maximum network delay$

T is a polynomial
Authentication: PKI Model

- Each server $i \in [N]$ identified by public key PK_i
- Digital signature scheme $\{\text{Setup}, \text{Sign}, \text{Verify}\}$
- Server i signs message m as $sig \leftarrow \text{Sign}(SK_i, m)$
- Other servers verify signature by running $\text{Verify}(PK_i, sig, m)$
Fact that arbitrary network failures prevents consensus is trivial. Network can split into two isolated parts that each must reach agreement by liveness, but can be on different values because they are isolated, so either consistency or liveness is violated.

More subtle impossibility is the FLP impossibility, which says that in a network where at most one server fails and every message between non-failed servers are eventually delivered, it is still impossible to solve the consensus problem. Therefore we cannot hope to solve it for some bound on the number of server failures.

Network Synchrony Models

- **Synchronous**: There is a known maximum delay Δ such that any message sent from one server to another is delivered within Δ time.
 - Protocol can use Δ as a parameter
- **Partially Synchronous**: Δ exists but is unknown
 - Same protocol must work for any Δ
- **Asynchronous**: Network experiences arbitrary failure
 - Consensus problem unsolvable

Will revisit in more detail in next lecture.
Threshold Corruption

Byzantine failures: Server is corrupted by Adversary and behaves arbitrarily

Theorem [Dwork-Lynch-Stockmeyer 1988]:
Consensus among N servers in a *partially synchronous* network is not possible when 1/3 or more servers may be corrupt

One-shot consensus (Byzantine Agreement)

- A designated server is called the proposer
- Proposer broadcasts tx to every other server

Goal: Each server outputs $tx_i \in \{0,1\}^*$. Protocol guarantees:
 - $\forall i, j$ if servers i and j are honest then $tx_i = tx_j$
 - If proposer is honest then $\forall i$ $tx_i = tx$

Challenge: malicious proposer might send different tx values to different servers

Problem is that a malicious proposer could send different tx values to different servers!
BA Reduction to Binary BA

Binary Byzantine Agreement
• Special case where proposer broadcasts \(b \in \{0,1\} \)
• General reduction from BA to Binary BA, with two extra broadcast rounds (Turpin-Coan 1984)
• We will see this reduction in the next lecture!

Basic Binary BA

Assume synchronous model

Servers broadcast signed vote b_i

Each server counts votes: if $\geq 2N/3$ votes seen for then output b^*

If a server sees $< 2N/3$ votes, enter TIMEOUT. This initiates a more complex recovery path... we’ll see one in the next lecture.
Basic Binary BA

- No honest servers i, j output $b_i \neq b_j$
 - Implies $\geq 2N/3$ votes for both b_i and b_j.
 - Let $S_i \subseteq [N]$ be the set of servers that i saw vote for b_i
 - Let $S_j \subseteq [N]$ be the set of servers that j saw vote for b_j.
 - $|S_i \cap S_j| \geq N/3$, hence the sets intersect on at least one honest server as less than $N/3$ servers are corrupt
 - This implies an honest server voted for distinct values, a contradiction.
From BA to SMR

- Leader election (e.g. round robin)
 - Synchronous clocks \rightarrow time epochs
 - New leader elected each epoch
- Leader acts as proposer in BA protocol
 - In epoch r leader broadcasts tx_r
 - Servers run BA on tx_r
PKI Permission Models

- **Fixed participation**: N servers in PKI model
- **Weighted PKI**: List of \((PK_i, w_i)\). Votes signed by \(PK_i\) are weighted by \(w_i\).
- **Dynamic Weighted PKI**: Weights on public keys are updated through consensus

 Equivalent to “proof-of-stake”, where weights are balances in an account
Non-PKI permission models

- Without PKI, each participant could pretend to control arbitrarily many servers, called the *Sybil attack*.
- Other forms of assigning weights to participants known as “Sybil resistance”.
- **Proof-of-work**: Participant voting power is proportional to energy *consumed* (solving computational puzzle).
- **Proof-of-space**: Participant voting power proportional to storage space dedicated to system.
Proof of work

Hash function $H: X \times Y \rightarrow \{0,1\}^{256}$ (e.g. SHA256)

Puzzle Difficulty: Integer D

Puzzle input: Challenge $c \in X$

Puzzle solution: Value $r \in Y$ s.t $H(c, r) < 2^{256}/D$

Question: If H modeled as *random function* such that for any x,r,z probability $H(x,r) = z$ is 2^{-256}, then what is the expected number of trials to find a solution r?

Probability $1/D$ that $H(c, r)$ falls in range $[0, 2^{256}/D)$. Expected number of trials is D.
Proof of work

- \text{PuzzleSetup}(\lambda, D) \rightarrow pp
- \text{PuzzleSolve}(pp, c) \rightarrow r
- \text{PuzzleVerify}(pp, c, r) \rightarrow 0/1
Proof of work

Definition: H is **proof of work** secure if runtime of H is T_H and for every algorithm A and $\epsilon > \frac{1}{D}$ such that $\text{Runtime}(A) < \epsilon DT_H$, for random challenge x:

- $\Pr[H(x, A(x)) < 2^{256}/D] < \epsilon$

Probability $1/D$ that $H(c, r)$ falls in range $[0, 2^{256}/D)$. Expected number of trials is D.
Proof of work

- Bitcoin sets D so that a proof-of-work is solved every 10 minutes
- Requires estimating hash-rate of the whole network (total # hashes computed per second)
- Current Bitcoin hashrate: 45,867,201,622 GH/s

\[
45 \times 10^9 \times 10^9 \text{ hashes/second} \\
= 45 \times 10^{18} \text{ hashes/second} \\
= 2.7 \times 10^{21} \text{ hashes / ten minutes}
\]

\[D \sim 2^{74.5}\]
Consensus for large scale participation

- Classical permission model expects N to be a small number of participants
- Classical BA & SMR protocols don’t scale for large N (too much communication)
- Next: Committee/leader election designed to reduce network communication with large scale participation
Two paradigms for leader election

1. In each epoch, **sample “random” committee** from total # of participants (or weighted by w_i in weighted PKI model). Run classical BA in the committee.

2. **Race for the next leader slot**, leader immediately proposes transactions. Probability of winning the race is proportional to Sybil power (e.g. first to solve PoW puzzle).
Nakamoto consensus

- Follows the second paradigm
- Originally presented in PoW permission model, later adapted to fit with other permission models [PassShi’17]
- Is “fully permissionless” in PoW setting:
 - Don’t know exact # of nodes participating
 - Nodes come and go, i.e. “late joining”
 - No-authentication: anyone can join by solving PoW

Nakamoto consensus

- State-machine transactions as blockchain

\[
\text{head}_{t+1} = H(\text{head}_t, \text{Tx_block_i+1}, nonce) \\
nonce \leftarrow \text{PuzzleSolve}(D, [\text{head}_i, \text{tx_block_i+1}])
\]
Nakamoto consensus

- Fork rule (fixed difficulty): extend longest chain

Question: what happens when puzzle difficulty varies over time? ⇒ follow “heaviest” chain
Nakamoto consensus

Protocol:
Every consensus participant (aka miner) works (i.e. solves PoW puzzle) to find a valid block head extending heaviest valid chain in its local view. Broadcast extension immediately upon discovery.

Heaviest by weight ➔ sum of all PoW puzzles in chain weighted by difficulty

Beautifully simple!
Probabilistic reasoning that after sufficiently deep transaction will not be reversed, as long as majority of work performed by honest miners
Nakamoto consensus

Consistency intuition:

- Miner controlling 49% power can immediately fork chain by 1 block and beat all other miners w/ prob. close to $\frac{1}{2}$, or by 2 blocks with prob. close to $\frac{3}{4}$
 - No problem! If miner broadcasts fork, other miners switch as this is now the longest chain

- What if miner forks chain 6 blocks deep and doesn’t broadcast until it has a longer chain than honest?
 - Probability $\frac{1}{64}$ it mines 6 blocks before honest

Probability of privately mining longest chain faster than honest portion of network degrades exponentially
Nakamoto consensus

Next lecture

• Relationship between network delay Δ and work difficulty. *What happens if miners can solve puzzles faster than they can propagate solutions through network?*

• What happens to Nakamoto in asynchronous (or partially synchronous) network?

• Mining incentive compatibility
References
