CS251 Final Exam, Winter 2025

Tuesday, Dec. 9, 2025

Instructions:

e You must do the exam on your own. You may not collaborate with others. Students
are bound by the Stanford honor code.

e The exam is open book, but not open Al. You may not use a search engine or an Al
bot when answering the questions.

e To submit your answers either (i) use the provided LaTeX template (see the link in
the next bullet), or (ii) write your answers on the PDF of the exam, or (iii) write your
answers on blank sheets of paper, but please make sure to start each question on a new
page. When done, please upload your solutions to Gradescope (KDJ7NE). You have
an extra 15 minutes to do so. There is no need to upload this first page of the exam.

e The LaTeX template is at https://cs251.stanford.edu/final-71pbntq39.zip.
Please do not share the link with others.

/24

/12

/15

/20

e The exam has 6 questions totaling 100 points.

/14

S| | W N =

e You have three hours to complete them.

/15

e Please keep your answers concise. Total

/100

Page 1 of 12

https://cs251.stanford.edu/final-71pbntq39.zip

Problem 1. [24 points]: Questions from all over.

A) The recent Fusaka Ethereum upgrade raised the maximum gas per block from 45M to
60M. What is the benefit of raising the max gas per block?

B) Why stop at 60M? What would go wrong if Ethereum set the max gas per block to a
trillion?

C) In Lecture 19 we looked at Bridging protocols. Consider a lock-and-mint bridge that
is used to move assets from a chain N without finality (e.g., using Nakamoto-style
consensus) to a chain P with finality (e.g., using a PBFT-style consensus). A user on
chain N sends their assets to the bridge address on N, and asks the bridge contract
on P to mint tokens equivalent to the amount locked up on N. The bridge contract
on P sends the newly minted tokens to the user on chain P, and that transaction is
finalized on P. What would go wrong if at that point chain N had a re-org and the
user’s transaction that sent the assets to the bridge address on N is no longer part of
the longest chain? How can chain P protect itself from this?

Page 2 of 12

D) A mapping in Solidity stores key-value pairs, much like a dictionary in Python. In
Python the keys() methods returns a list of all the keys in the dictionary. Please
explain why Solidity does not provide a keys function for a mapping, as in Python.
Hint: Think how a mapping in Solidity is implemented in the EVM.

E) A Rollup system can provide a much higher transaction throughput than Ethereum.
What is the key reason that a Rollup can process more transactions per second than
Ethereum?

F) In the very last lecture we talked about DePIN. What is DePIN and how does it relate
to blockchains?

Page 3 of 12

Problem 2. [12 points|: Proof-of-Stake Consensus.

In Lecture 6 we looked at a simple PBFT-style proof-of-stake consensus protocol. Recall
that in every slot a leader is chosen, the leader broadcasts a block to the network, and once
two-thirds of the validators sign the block, the block is finalized at that slot.

A) Suppose that N validators are currently staked and sign blocks on every slot. However,
after some global disaster (an alien invasion?) 90% of the validators can no longer sign
blocks, ever, while the remaining 10% of the validators continue to function as normal.
What happens to the Ethereum network? Recall that missing many slots triggers a
slashing event, and once a validator loses all of its stake it is kicked out of the validator
set. How many defunct validators need to be kicked out before the network can again
finalize blocks? You can assume that all validators staked the same minimum amount,
namely 32 ETH.

Page 4 of 12

How to choose a leader at each slot? Recall that validator j locks up s; ETH, for some integer
s; > 32. Let S be the sum of s; over all validators — the total locked stake. Validator j
should be elected as a leader once every S/s; slots, in expectation. The intent is that the
more stake a validator locks up, the more frequently they will be chosen as the leader. For
simplicity, let’s assume that S/s; is an integer for all j.

B) Let’s consider two ways to elect a leader. In the first method, at the beginning of every
slot the chain chooses a verifiable uniform random value r; € {1,...,5/s;} for every
validator (that is, one random value is chosen per validator). Then validator j acts as
a leader for that slot if r; = 1. Explain if this is a good way to elect a leader.

C) In the second method, a single verifiable uniform random value r € {0,...,5 — 1} is
chosen at the beginning of every slot, and validator j acts as the leader if r is in the
interval A <r < A+ s;, where A = Z,Kj si. Explain if this is a good way to elect a
leader.

Page 5 of 12

Problem 3. [15 points|: DeFi.

A)

In Lecture 10 we explored an AMM governed by the constant product formula. Consider
a pool that holds X tokens of type A and Y tokens of type B. Alice has a tokens of type
A and wants to exchange them for tokens of type B. She is considering two strategies:

e Send all her a tokens of type A in one transaction and get back b tokens of type B
(we showed that the AMM sends back b = a - Y/(X + a) tokens), or

e Send a/2 tokens to get back b; tokens in one transaction. Later send the remaining
a/2 tokens and get back another by tokens in another transaction. Overall Alice
gets back by + by tokens of type B.

Which method is more advantageous for Alice? That is, is b > by + by or b < by + by or
b = b1 + by? You may assume that Alice is the only one interacting with the pool and
that there are no additional fees (i.e. ¢ = 1). Please justify your answer.

Hint: There is a two line answer to this question.

Recall that an exchange that is using a CLOB (central limit order book) takes buy
and sell requests from customers, matches up the buy and sell orders, and executes
the resulting list of transactions on chain. On Ethereum, a fully on-chain CLOB (i.e.,
where the matching algorithm runs in a smart contract) is not common. Why is that?
Note that on other chains (such as Hyperliquid) CLOBs are widely used.

Page 6 of 12

C) Suppose that an ERC-20 smart contract for the XYZ token includes a pause function
that pauses all activity in the contract until a resume function in called. Once pause
is called and successfully pauses all activity in the ERC-20 contract, does that prevent
the public from buying and selling this XYZ token, for example on an exchange like
Coinbase? If so explain why, if not explain why not.

Page 7 of 12

Problem 4. [20 points|: Solidity programming.

The state of California decides to implement its lottery system as an Ethereum contract.
The contract should support the following methods:

e buyTicket: any user can send the price of a ticket in Ether to the contract and the
contract will record that user’s address.

e dolottery: this method is called by the state lottery system once a week to randomly
select that week’s winner, if any. If there is a winner, the contract sends 90% of the
pot to the winner’s address and the remaining 10% rolls over to the following week. If
there is no winner, the entire pot rolls over to the following week. Either way, the set
of users resets to the empty set.

The contract proceeds in epochs, where each epoch is seven days, starting from the moment
that the lottery contract is created. Say n users participate in a particular epoch. Each user
is assigned an ID between 0 and n — 1 in sequential order.

The doLottery method can only be called by the state of California within a 10 minute window
after the end of each epoch. The method selects a winner by computing the current block
hash modulo 2n, and if the number matches a user ID, that user is the winner. Otherwise
there is no winner, which happens with probability 1/2. The block hash modulo 2n can be
computed as (blockhash(block.number) % (2*n)).

A) Write the solidity code to implement this contract. Either use a blank sheet or the
provided LaTeX template. Recall that in Solidity, the global variable block.timestamp
refers to the current time (specified in seconds), and block.timestamp + 7 days and
block.timestamp + 10 minutes refer to the current time plus the specified offset.

B) Is this a good idea? Are there parties that can manipulate the lottery to greatly increase
their chances of winning? If so explain how, if not explain why not.

Page 8 of 12

Problem 5. [14 points]: Proof systems.

Succinct proof systems (SNARKSs) play a crucial role in on-chain privacy as well as in scaling
solutions and bridging. Recall that in Lecture 16 we used a polynomial commitment scheme
(PCS) to build a SNARK.

e First, the prover commits to a tableau that represents the computation trace of a
circuit. It does so by interpolating a univariate polynomial f € F,[X]| of degree at
most d so that f(wyg),..., f(wg) are the values in the tableau. Here p is some large
prime and wy, . ..,wq are some fixed elements in F,. The prover sends to the verifier a
commitment to f.

e Second, the prover proves that the tableau encoded by the committed polynomial rep-
resents a valid computation trace.

One of the main tools used in the second step is a ZeroCheck proof system that lets the
prover convince the verifier that a committed polynomial g € F,[X], possibly of degree much
greater than d, is identically zero on the set 2 := {wy,...,wy}. That is, g(wo) = g(w1) =
-+ = g(wg) = 0. As short hand we write g(2) = 0. In this problem we will use ZeroCheck
as a black box to build proof systems for other properties of a committed polynomial.

A) Let h € F,[X] be a committed polynomial. In this part our goal is to build a proof
system that lets the prover convince the verifier that all the evaluations h(wy), . . . , h(wq)
are in {0, 1}. As short hand we write h(2) C {0, 1}. This question comes up often when
proving real-world computations. Show how the prover can prove that h(€2) C {0,1}
using a single invocation of ZeroCheck.

Hint: Observe that a polynomial commitment to h is also a polynomial commitment
to the polynomial w := h?. In particular, for some u,v € F,, the prover can convince
the verifier that w(u) = v? by providing an evaluation proof that h(u) = v.

B) Generalize your method from part (A) to show how the prover can convince the verifier
that A(Q) € {0,1,2,...,7} using a single invocation of ZeroCheck.
Discussion: There are more efficient proof systems for part (b), but we will leave that
for another day.

Page 9 of 12

C) Finally, suppose we are given a PCS that can commit to polynomials in F,[X] of degree
at most d. Our goal is to build a PCS that can commit to polynomials of higher degree,
in particular of degree at most 2d 4+ 1. To do so, observe that if ¢ has degree at most
2d + 1, then it can be decomposed into two polynomials gpign and giey, each of degree
at most d, such that g(X) = X gyn(X) + giow(X). For example, with d = 2,

for g(X)=5X"+4X"+3X°>+2X*+ X -7
we have gpign(X) =5X> +4X +3 and gpu(X) =2X*+ X -7,
and indeed g(X) = X?gnign(X) + Grouw(X).
To commit to g the committer uses the provided PCS to commit to gpg, and g, That

is, it commits to ¢ by sending two commitments (comy, com;), one for gy, and one for
Giow- Now, let u, v € F,,. Explain how the prover can convince the verifier that g(u) = v.

Hint: Observe that for a polynomial g, and the derived polynomials gnigh, Giow, We have
that g(u) = v if and only if there are vy, v; € F,, such that

d

Ghigh(0) = Vh, Gow(w) = vy, and v =uv, +)

e The proof 7 that g(u) = v is a tuple of four elements. How does an honest prover
construct this 4-tuple given (g, u, v) as input?

e The Verifier takes (comg = (comy,, com;), u, v, 7T) as input. What does it do to check
the proof 7 claiming that g(u) = v?

Page 10 of 12

Problem 6. [15 points]: Rollups.

In Lecture 18 we discussed a way to scale the Ethereum transaction rate using a layer 2 Rollup
(or Rollup for short). We saw two types of Rollups: an optimistic Rollup and a zk-Rollup.
In this question we consider a centralized Rollup coordinator that accepts transactions from
the public, sequences the submitted transactions into Rollup blocks, executes one block after
another to update the Rollup state, and submits state updates to the underlying chain.

A Rollup usually pushes its state updates to one underlying chain, such as Ethereum. But
suppose a zk-Rollup maintains smart contracts on two chains, say Ethereum and Solana.
The coordinator periodically pushes a state update (i.e., a Merkle root) and proofs to both
layer 1 chains. Doing so lets users who have assets on both Ethereum and Solana easily move
their assets to the Rollup. This lets Alice buy something using her combined ETH and SOL
balance on the Rollup. Without this type of Rollup, combining the balances would require
some form of bridging. Note that there are two Rollup smart contracts, one on each chain.
The Ethereum contract holds the Rollup assets on Ethereum and the Solana contract holds
the Rollup assets on Solana. These contracts hold the assets on behalf of the Rollup users.

A) In the honest case, the coordinator always pushes the same Merkle root to both chains.
Can a malicious coordinator push one valid Merkle root and proof to one chain, and a
different valid Merkle root and proof to the other chain? In a zk-Rollup, how would a
malicious coordinator create two Merkle roots along with their valid update proofs?
Hint: Recall that the coordinator chooses the set of transactions to include in each
Rollup block.

B) What could go wrong if the malicious coordinator used the strategy you outlined in
the previous part? Give an example of how Alice might lose some assets as a result. If
needed, you can assume that there is an exchange (e.g., Uniswap) running in the Rollup
that will exchange ETH for SOL and vice versa.

Page 11 of 12

C) Can you think of a way to ensure that the coordinator always pushes the same Merkle
root to both chains?

Page 12 of 12

