
CS251 Final Exam

Due Wednesday, Nov. 18, 2020, at beginning of lecture

Instructions:

You have 6 days to complete the final exam. You

may use any (non-human) resource to answer the

questions. You may not collaborate with others.

Your Name:

SUNet ID: @stanford.edu

Check if you require expedited grading:

In accordance with both the letter and the spirit
of the Stanford Honor Code, I neither received nor
provided any assistance on this exam.

Signature:

• The exam has 6 questions totaling 100 points.

• You have 6 days to complete them.

• Please submit your answers via Gradescope (92ZNG8)

• Keep your answers concise.

1 /18

2 /13

3 /17

4 /16

5 /18

6 /18

Total /100

Page 1 of 13

Problem 1. [18 points]: Questions from all over.

A) Briefly explain what is an Ethereum re-entrancy attack and why it can lead to loss of
funds.

B) In class we presented an HD wallet as a way to generate many addresses that are
unlinkable on the blockchain. The online wallet maintains a key, denoted in the lecture
by (k2, h), that lets it construct all these addresses and calculate the user’s overall
balance. Recall that public key number i is defined as pki = h · ghmac(k2,i) where
h = gk1 . If this key (k2, h) is stolen, can the funds associated with any of these addresses
be stolen?

Circle your answer: yes no

Brief justification:

Page 2 of 13

C) In a confidential transaction (Lecture 16) every transaction includes a zero knowledge
proof that (i) the sum of the inputs is equal to the sum of the outputs, and (ii) all the
outputs are positive. What goes wrong if instead the proof were to prove that (i) the
sum of the inputs is equal to the sum of the outputs, and (ii) all the inputs are positive.
Describe an attack on the system.

D) What is the difference in the privacy models provided by Zcash vs. confidential trans-
actions?

Page 3 of 13

E) The Bitcoin blockchain contains many UTXOs that will never be spent, either because
of an OP RETURN script, or because the signing key needed to spend the UTXO has
been lost. Nevertheless, they must be maintained as part of the active UTXO set. A
frequent proposal is to modify Bitcoin so that UTXOs that are more than two years
old will be automatically removed from the UTXO set. Is this a good idea? What will
happen to transaction fees for a UTXO that is about to expire in one month?

F) All stablecoin systems maintain some collateral so that when the price of the stablecoin
drops, the collateral can be used to shrink the supply of coins and bring the price back
up. Some projects maintain on-chain collateral (like MakerDao, which uses ether for
collateral) while others maintain off-chain collateral (like USDT, which uses fiat curren-
cies such as the US dollar for collateral). What is the primary difference between these
systems in terms of the required level of trust by the public? Specifically, which design
allows the public to verify that the collateral is properly managed and maintained?

Page 4 of 13

Problem 2. [13 points]: Consensus protocols.

A) Suppose Alice buys a digital product (e.g., a digital book) from an online merchant and
pays using Bitcoin. The merchant sends the product to Alice the minute it sees the
payment transaction in a block in the Bitcoin network. Why does this strategy present
a significant risk for the merchant?

B) Proof of work. Recall that the mining difficulty in Bitcoin is updated roughly every two
weeks so that the expected inter-block time remains at 10 minutes. The difficulty right
after the genesis block is quite low, and it increases as more miners join the network.
Suppose the blockchain currently contains n blocks. An attacker creates a blockchain
of length n + 100, starting at the correct genesis block, but where all blocks have the
same low difficulty as the genesis block. Because the difficulty is low in all blocks,
creating such a long chain takes relatively little work. If miners follow the “mine the
longeset chain” rule they would abandon the correct chain and mine this fake longer
chain instead. Why is this not an attack on Bitcoin consensus?

Page 5 of 13

Problem 3. [17 points]: Solidity bugs.

The following buggy Solidity contract implements a fund-raise for an independent film project
by an unknown director. Anyone can send ether to the contract and receive tokens for their
contribution, as implemented in the fallback function below. Once the film is finished, royal-
ties from the film will be distributed to all participants based on token ownership. The film
producer will fund the production of the film by withdrawing ether from the contract using
the withdraw function below. The contract should ensure that every month the producer
can only withdraw 1 more ether than has ever been withdrawn.

contract MovieToken {

address owner; // record the producer’s address

mapping (address => uint256) balances; // investor balances

uint256 totalSupply; // total supply in contract

uint256 lastWithdrawDate; // last withdrawal time

function MovieToken() { // Constructor

owner = msg.sender;

balances[owner] = msg.value; // The producer may fund the movie

totalSupply = balances[owner];

}

function withdraw(uint256 amount) { // note: function is not payable

if (msg.sender != owner) { throw; } // Only the producer may withdraw funds

if (amount == 0 || amount > this.balance) { throw; }

if (now < lastWithdrawDate + (1 months)) { throw; } // Only once per month

lastWithdrawDate = now;

// Withdraw schedule: only withdraw 1 more ether than has ever

// been withdrawn.

uint256 maxAmount = (totalSupply - this.balance + (1 ether));

if (amount > maxAmount) { throw; }

if (!owner.send(amount)) { throw; } // send the funds to the producer

}

// Fallback function: record a fund-raise contribution

function () payable {

balances[msg.sender] += msg.value; // transfer tokens to investor

totalSupply += msg.value; // record amount

}

}

Page 6 of 13

A) What is the maximum amount that can be withdrawn in each of the first four months,
assuming the maximum amount is withdrawn every month?

month 1: , month 2: , month 3: , month 4: .

B) Describe an attack that lets the producer withdraw all the funds sent to the project
immediately on the first month.
Hint: if someone sends funds to a contract address before the contract is created, then
upon creation of a contract at that address, the variable this.balance is equal to the
amount of funds sent prior to creation. Note also that all variables in the MovieToken

contract are unsigned integers, so that −1 is actually 2256 − 1.

C) When a contract, say contract X, executes a selfdestruct with contract Y ’s address
as an argument, this kills contract X and adds X’s balance to Y , without triggering
any code execution at Y . With this in mind, suppose we try to prevent your attack
from part (B) by changing the second line in the constructor to:

balances[owner] = this.balance + msg.value;

Is there an attack that lets the producer withdraw all the funds on the first month?

D) How should the contract be fixed so that it correctly implements the intended with-
drawal schedule, without changing the program logic?
Hint: add at most four lines to the contract.

Page 7 of 13

Problem 4. [16 points]: Scaling.

Recall that a Rollup server can be used to scale payment transactions in the Ethereum
network. The basic SNARK-Rollup system provides no privacy for the payer or payee because
all transactions are recorded in the clear on the blockchain.

A) Suppose Rollup were to use a zkSNARK and not record transactions on the blockchain.
Would this provide the same level of privacy as Zcash? Justify your answer.
Hint: recall that in (simplified) Zcash, no one other than the payer and payee learn
the transaction details.

B) Recall that optimistic Rollup is a variant of Rollup that eliminates the need for a
SNARK. The Rollup server simply posts an updated Merkle root to the blockchain,
without a SNARK. The update is signed by the Rollup server. Clearly this design is
insecure: the Rollup server could issue a fraudulent transaction to steal a user’s funds.
How does an optimistic Rollup system protect against this?

Page 8 of 13

C) Scaling by sharding. Consider a permissioned blockchain with a fixed set of n valida-
tor nodes. One proposal for scaling the blockchain is to split it into n independent
blockchains, assigning one validator to each independent blockchain. Now, every de-
centralized application (DAPP) randomly selects a blockchain to run on, thereby in-
creasing throughput by a factor of n. What are two problems with this design, in terms
of security and interoperability between DAPPs?

Page 9 of 13

Problem 5. [18 points]: Front running.

In Lecture 7 we saw an example Ethereum contract for the NameCoin decentralized applica-
tion (DAPP). The DAPP manages domain names, and lets anyone register a domain name
of their choice, by paying the DAPP.

A) Explain why the NameNew function (Lecture 7, slide 24) is vulnerable to front running.
In particular, explain how miners can profit from front running.

B) Let’s redesign NameNew to prevent front running. One option is to use cryptographic
commitments:

commit(name,r) = sha3(name,r) where r is a random 512-bit value.

The plan is to split NameNew into two functions: one called NameNewBegin and one
called NameNewDo. To register a new domain, the customer first calls the function
NameNewBegin giving it a commitment to the domain name being requested (the com-
mitment is computed by the caller). Later, the customer calls NameNewDo giving it an
opening to the commitment (i.e., name and r). This function registers the new domain
in the customer’s name. Write the code for these two functions. It is up to you to de-
sign these functions so that they properly prevent cheating and front running by either
miners and customers. If needed, you may change the nameEntry structure.
Caution: note that once the user calls NameNewDo the front runner can call NameNewBegin
and NameNewDo in quick succession to try and pre-register the domain that the user
wants to reserve. Your code should prevent this.

Page 10 of 13

C) Explain why your implementation prevents front running by miners. In particular:

(a) Why is it important that the commitment be hiding? What would go wrong if the
committed value could be extracted from the commitment string?

(b) Why is it important that the commitment be binding? What would go wrong if
the user could open the commitment string to any value?

Page 11 of 13

Problem 6. [18 points]: Multisig vs. threshold sigs.

Let G = {1, g, g2, . . . , gq−1} be a finite cyclic group of prime order q with generator g. Let
H be a hash function H : M → G. In a signature scheme called BLS the secret key x is
a random number in {0, 1, . . . , q − 1} and the public key is pk = gx ∈ G. A signature on
message m ∈M is simply σ = H(m)x ∈ G.

A) 3-out-of-3 signing. To protect its signing key x, Bob can split up x into three shares
and distribute the shares among three parties as follows: choose three random numbers
x1, x2, x3 ∈ {0, 1, . . . , q − 1} such that x = x1 + x2 + x3 mod q. Bob deletes its local
copy of x. To sign a message m each party computes σi = H(m)xi for i = 1, 2, 3 and
sends this partial signature to Bob. Explain how Bob obtains the signature on m from
these three partial signatures.

B) Let’s generalize the approach above to 3-out-of-5 signing with five parties which we will
call P1, P2, P3, P4, P5. As in Bitcoin’s multisig, we want the signature to identify the
subset of three parties that signed the transaction.

Bob does the following: he generates
(
5
3

)
= 10 public keys pk i = gxi for i = 1, . . . , 10,

one public key for each subset of three parties. Say, pk 1 corresponds to the subset
{P1, P2, P3} and say pk 8 corresponds to the subset {P2, P4, P5}.
Next, for i = 1, . . . , 10 Bob applies 3-out-of-3 sharing as in part (A) to each of the secret
keys xi to get xi = xi,1 + xi,2 + xi,3 mod q. Bob gives the share xi,j to party number j
(for j = 1, 2, 3) in subset number i. For example, for pk 8 party P2 gets x8,1, P4 gets
x8,2, and P5 gets x8,3. Each of the five parties now has one share for each subset of
size 3 that it belongs to (each party has 6 shares total). When three parties want to
sign a message m, they sign using the three shares that correspond to their subset. For
example, P2, P4, P5, will sign using their shares of x8, namely x8,1, x8,2, x8,3.

What information needs to be written to the blockchain to use this 3-out-of-5 signing
approach as a replacement for Bitcoin’s multisig?
Hint: The funding transaction will create a UTXO containing the Merkle root of a
Merkle tree that has the 10 public keys pk 1, . . . , pk 10 as its leaves. What signature data
is needed in the spending transaction to spend the UTXO?

Page 12 of 13

C) Suppose that (i) the Merkle tree is implemented using SH256 (32 byte hashes), (ii) each
ECDSA or BLS public key is 32 bytes, and (iii) each ECDSA or BLS signature is 48
bytes. Does the method used in part (B) result in more or less data written to the
blockchain compared to Bitcoin’s multisig method for 3-out-of-5 signing?

D) Does your conclusion from part (C) hold for t-out-of-n signing for all t and n? Or is
there a t and n where your conclusion would change?

E) When using the method from Part (B), what is the running time for creating the funding
transaction in terms of n and t? Is this practical for, say, n = 100 and t = 50?

Page 13 of 13

