
Ethereum: mechanics

CS251 Fall 2022
(cs251.stanford.edu)

Dan Boneh

Note: HW#2 posted tonight. Due Oct. 24.

New topic: limitations of Bitcoin

Recall: UTXO contains (hash of) ScriptPK
• simple script: indicates conditions when UTXO can be spent

Limitations:
• Difficult to maintain state in multi-stage contracts
• Difficult to enforce global rules on assets

A simple example: rate limiting. My wallet manages 100 UTXOs.
• Desired policy: can only transfer 2BTC per day out of my wallet

An example: DNS

Domain name system on the blockchain: [google.com ⇾ IP addr]

Need support for three operations:
• Name.new(OwnerAddr, DomainName): intent to register
• Name.update(DomainName, newVal, newOwner, OwnerSig)
• Name.lookup(DomainName)

Note: also need to ensure no front-running on Name.new()

A broken implementation

Name.new() and Name.upate() create a UTXO with ScriptPK:

 DUP HASH256 <OwnerAddr> EQVERIFY CHECKSIG VERIFY
 <DNS> <DomainName> <IPaddr> <1>

only owner can “spend” this UTXO to update domain data

Contract: (should be enforced by miners)
 if domain google.com is registered,
 no one else can register that domain

Problem: this contract cannot be enforced using Bitcoin script

verify
sig is valid

ensure top
of stack is 1

What to do?

NameCoin: a fork of Bitcoin that implements this contract
 (see also the Ethereum Name Service -- ENS)

Can we build a blockchain that natively supports generic
contracts like this?

 ⇒ Ethereum

Ethereum: enables a world of applications

stateofthedapps.com, dapp.review

A world of Ethereum Decentralized apps (DAPPs)

• New coins: ERC-20 standard interface

• DeFi: exchanges, lending, stablecoins, derivatives, etc.

• Insurance

• DAOs: decentralized organizations

• NFTs: Managing asset ownership (ERC-721 interface)

Bitcoin as a state transition system

UTXO1
UTXO2

⋮

world state

…
UTXO1
UTXO3

⋮

updated world state

…input

Tx: UTXO2 ⇾ UTXO3

Fbitcoin : S × I ⇾ S

S: set of all possible world states, s0 ∈ S genesis state
I: set of all possible inputs

Bitcoin rules:

Ethereum as a state transition system

Much richer state transition functions

 ⇒ one transition executes an entire program

Ethereum
world state

…

updated Ethereum
world state

…input

Tx

Running a program on a blockchain (DAPP)

consensus layer (beacon chain)

compute layer (execution chain): The EVM

state0

program
code

… blockchain …

state1Tx1 Tx2 state2

create a DAPP

…

The Ethereum system
Proof-of-Stake consensus

One block every 12 seconds.

about 150 Tx per block.

Block proposer receives
Tx fees for block

(along with other rewards)

A bit about the beacon chain (Eth2 consensus layer)

To become a validator: stake (lock up) 32 ETH … or use Lido.

Validators: - sign blocks to express correctness (finalized once enough sigs)

 - occasionally act as block proposer (chosen at random)

 - correct behavior ⇒ issued new ETH every epoch (32 blocks)

 - incorrect behavior ⇒ slashed

Staked ETH
(27M)# Validators

(843K)

(lots of details)

The economics of staking

Validator locks up 32 ETH. Oct 2023: 27M ETH staked (total)

Annual validator income (an example):
• Issuance: 1.0 ETH
• Tx fees: 0.4 ETH
• MEV: 0.4 ETH
• Total: 1.8 ETH (5.6% return on 32 ETH staked)

Can be adjusted
(BASE_REWARD_FACTOR)

A function of
congestion

In practice: staking provider (e.g., Lido) takes a cut of the returns

The Ethereum system

consensus layer (beacon chain)

compute layer (execution chain)

notify_new_payload(payload) [Engine API]

sends transactions to compute layer

32 blocks
in an epoch

update
world state

The Ethereum Compute Layer:
The EVM

Ethereum compute layer: the EVM
World state: set of accounts identified by 32-byte address.

Two types of accounts:
(1) externally owned accounts (EOA):

 controlled by ECDSA signing key pair (pk,sk).
 sk: signing key known only to account owner

 (2) contracts: controlled by code.
 code set at account creation time, does not change

Data associated with an account
Account data Owned (EOA) Contracts

address (computed): H(pk) H(CreatorAddr, CreatorNonce)

code: ⊥ CodeHash

storage root (state): ⊥ StorageRoot

balance (in Wei): balance balance (1 Wei = 10−18 ETH)

nonce: nonce nonce

(#Tx sent) + (#accounts created): anti-replay mechanism

Account state: persistent storage
Every contract has an associated storage array S[]:

 S[0], S[1], … , S[2256-1]: each cell holds 32 bytes, init to 0.

Account storage root: Merkle Patricia Tree hash of S[]
• Cannot compute full Merkle tree hash: 2256 leaves

S[000] = a
S[010] = b
S[011] = c
S[110] = d

root

10, d

0

1

0, a0

1

⊥, b

⊥, c

0

1

time to compute
root hash:
 ≤ 2×|S|

|S| = # non-zero cells

State transitions: Tx and messages
Transactions: signed data by initiator
• To: 32-byte address of target (0 ⇾ create new account)

• From, [Signature]: initiator address and signature on Tx (if owned)

• Value: # Wei being sent with Tx (1 Wei = 10-18 ETH)

• Tx fees (EIP 1559): gasLimit, maxFee, maxPriorityFee (later)
• if To = 0: create new contract code = (init, body)

• if To ≠ 0: data (what function to call & arguments)

• nonce: must match current nonce of sender (prevents Tx replay)
• chain_id: ensures Tx can only be submitted to the intended chain

State transitions: Tx and messages

Transaction types:

 owned ⇾ owned: transfer ETH between users
 owned ⇾ contract: call contract with ETH & data

Example (block #10993504)

From To msg.value Tx fee (ETH)

Messages: virtual Tx initiated by a contract

Same as Tx, but no signature (contract has no signing key)

 contract ⇾ owned: contract sends funds to user
 contract ⇾ contract: one program calls another (and sends funds)

One Tx from user: can lead to many Tx processed. Composability!

 Tx from owned addr ⇾ contract ⇾ another contract
another contract ⇾ different owned

Example Tx

world state (four accounts) updated world state

An Ethereum Block
Block proposer creates a block of n Tx: (from Txs submitted by users)

• To produce a block do:
• for i=1,…,n: execute state change of Txi sequentially

 (can change state of >n accounts)

• record updated world state in block

Other validators re-execute all Tx to verify block ⇒
 sign block if valid ⇒ enough sigs, epoch is finalized.

Block header data (simplified)

(1) consensus data: proposer ID, parent hash, votes, etc.

(2) address of gas beneficiary: where Tx fees will go

(3) world state root: updated world state

 Merkle Patricia Tree hash of all accounts in the system

(4) Tx root: Merkle hash of all Tx processed in block

(5) Tx receipt root: Merkle hash of log messages generated in block

(5) Gas used: used to adjust gas price (target 15M gas per block)

The Ethereum blockchain: abstractly

…
prev hash

updated
world
state

Tx log
messages

accts.

prev hash

updated
world
state

Tx log
messages

accts.

…

Amount of memory to run a node

ETH total blockchain size (archival): 16 TB (Oct. 2023)

≈1.3 TB

An example contract: NameCoin

contract nameCoin { // Solidity code (next lecture)

 struct nameEntry {
 address owner; // address of domain owner
 bytes32 value; // IP address
 }

 // array of all registered domains
 mapping (bytes32 => nameEntry) data;

An example contract: NameCoin
function nameNew(bytes32 name) {

 // registration costs is 100 Wei

 if (data[name] == 0 && msg.value >= 100) {
 data[name].owner = msg.sender // record domain owner
 emit Register(msg.sender, name) // log event
}}

Code ensures that no one can take over a registered name

Serious bug in this code! Front running. Solved using commitments.

An example contract: NameCoin
function nameUpdate(
 bytes32 name, bytes32 newValue, address newOwner) {

 // check if message is from domain owner,
 // and update cost of 10 Wei is paid

 if (data[name].owner == msg.sender && msg.value >= 10) {

 data[name].value = newValue; // record new value
 data[name].owner = newOwner; // record new owner
 }}}

An example contract: NameCoin

function nameLookup(bytes32 name) {

 return data[name];
 }

} // end of contract

Used by other contracts

Humans do not need this
 (use etherscan.io)

EVM mechanics: execution environment

Write code in Solidity (or another front-end language)

⇒ compile to EVM bytecode
 (some projects use WASM or BPF bytecode)

⇒ validators use the EVM to execute contract bytecode
 in response to a Tx

The EVM

Stack machine (like Bitcoin) but with JUMP
• max stack depth = 1024
• program aborts if stack size exceeded; block proposer keeps gas
• contract can create or call another contract

In addition: two types of zero initialized memory
• Persistent storage (on blockchain): SLOAD, SSTORE (expensive)
• Volatile memory (for single Tx): MLOAD, MSTORE (cheap)
• LOG0(data): write data to log

see https://www.evm.codes

Every instruction costs gas, examples:

SSTORE addr (32 bytes), value (32 bytes)

• zero ⇾ non-zero: 20,000 gas

• non-zero ⇾ non-zero: 5,000 gas (for a cold slot)

• non-zero ⇾ zero: 15,000 gas refund (example)

CREATE : 32,000 + 200×(code size) gas; CALL gas, addr, value, args

SELFDESTRUCT addr: kill current contract (5000 gas)

Refund is given for reducing size of blockchain state

Gas calculation
Why charge gas?
• Tx fees (gas) prevents submitting Tx that runs for many steps.
• During high load: block proposer chooses Tx from mempool

 that maximize its income.

Old EVM: (prior to EIP1559, live on 8/2021)
• Every Tx contains a gasPrice ``bid’’ (gas ⇾ Wei conversion price)
• Producer chooses Tx with highest gasPrice (max sum(gasPrice×gasLimit))
 ⟹ not an efficient auction mechanism (first price auction)

Gas prices spike during congestion
GasPrice in Gwei:
 86 Gwei = 86×10-9 ETH

Average Tx fee in USD congestion

Gas calculation: EIP1559 (since 8/2021)

EIP1559 goals (informal):

• users incentivized to bid their true utility for posting Tx,

• block proposer incentivized to not create fake Tx, and

• disincentivize off chain agreements.

[Transaction Fee Mechanism Design, by T. Roughgarden, 2021]

Gas calculation: EIP1559

Every block has a “baseFee”:
 the minimum gasPrice for all Tx in the block

baseFee is computed from total gas in earlier blocks:

• earlier blocks at gas limit (30M gas) ⟹ base fee goes up 12.5%

• earlier blocks empty ⟹ base fee decreases by 12.5%

If earlier blocks at “target size” (15M gas) ⟹ base fee does not change

interpolate
in between

Computed gasPrice bid:

 gasPrice ⇽ min(maxFee, baseFee + maxPriorityFee)

Gas calculation
EIP1559 Tx specifies three parameters:
• gasLimit: max total gas allowed for Tx

• maxFee: maximum allowed gas price (max gas ⇾ Wei conversion)

• maxPriorityFee: additional “tip” to be paid to block proposer

Max Tx fee: gasLimit × gasPrice

Gas calculation (informal)
gasUsed ⇽ gas used by Tx

 Send gasUsed×(gasPrice – baseFee) to block proposer

 BURN gasUsed× baseFee

⇒ total supply of ETH can decrease

Gas calculation
(1) if gasPrice < baseFee: abort
(2) If gasLimit×gasPrice < msg.sender.balance: abort
(3) deduct gasLimit×gasPrice from msg.sender.balance

(4) set Gas ⇽ gasLimit
(5) execute Tx: deduct gas from Gas for each instruction
 if at end (Gas < 0): abort, Tx is invalid (proposer keeps gasLimit×gasPrice)

(6) Refund Gas×gasPrice to msg.sender.balance

(7) gasUsed ⇽ gasLimit – Gas
 (7a) BURN gasUsed× baseFee
 (7b) Send gasUsed×(gasPrice – baseFee) to block producer

Example baseFee and effect of burn
block # gasUsed baseFee (Gwei) ETH burned

15763570 21,486,058 16.92 0.363

15763569 14,609,185 16.97 0.248

15763568 25,239,720 15.64 0.394

15763567 29,976,215 13.90 0.416

15763566 14,926,172 13.91 0.207

15763565 1,985,580 15.60 0.031

≈ gasUsed×baseFee

baseFee < 16Gwei ⇒ new issuance > burn ⇒ ETH inflates
baseFee > 16Gwei ⇒ new issuance < burn ⇒ ETH deflates

(<15M)

↓

(<15M)

↓

(<15M)

↓

beacon chain

Why burn ETH ???

Recall: EIP1559 goals (informal)
• users incentivized to bid their true utility for posting Tx,
• block proposer incentivized to not create fake Tx, and
• disincentivize off chain agreements.

Suppose no burn (i.e., baseFee given to block producer):
⟹ in periods of low Tx volume proposer would try to increase

volume by offering to refund the baseFee off chain to users.

Note: transactions are becoming more complex

Gas usage is increasing ⇒ each Tx takes more instructions to execute

Next lecture: writing Solidity contracts

END OF LECTURE

