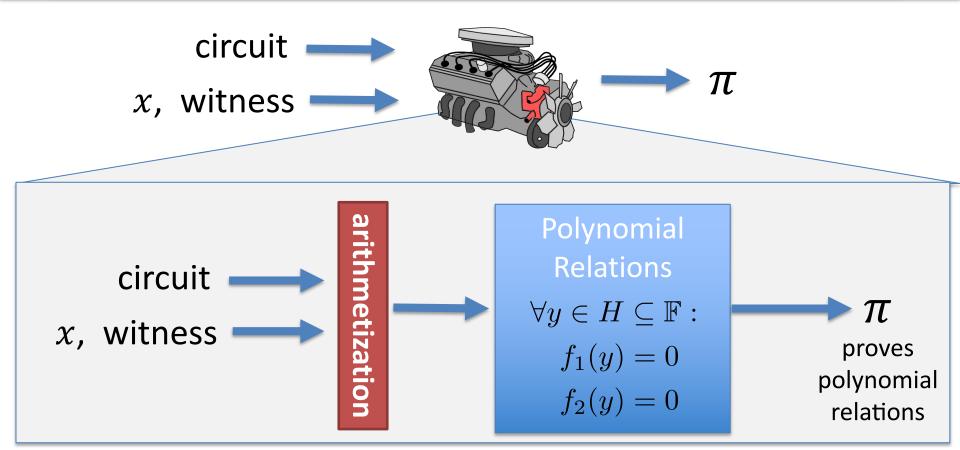
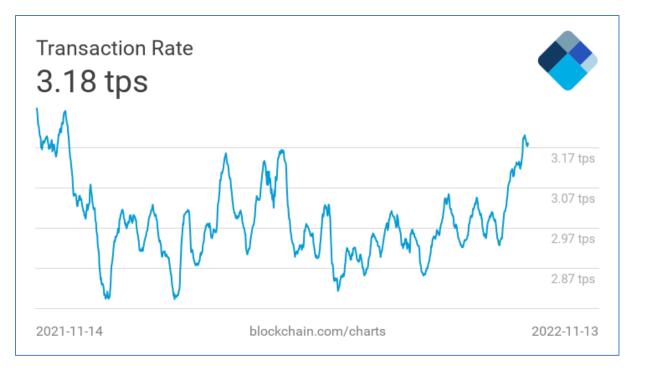

(cs251.stanford.edu)

Scaling the blockchain part I: Payment Channels and State Channels


Dan Boneh

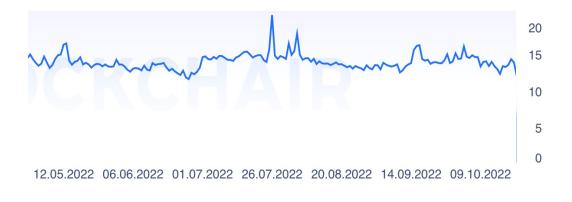
... but first, last words on SNARKs (for now)


language

... but first, last words on SNARKs (for now)

Scaling the blockchain

Bitcoin Tx per second



≈4200 Tx/block1 block / 10 mins

$$\Rightarrow$$
 max: 7 Tx/sec

Ethereum Tx per second

Ethereum avg Tx per second:

Simple Tx: 21k Gas max 30M Gas per block ⇒ max 1428 tx/block

 $1 \text{ Block/12s} \\ \Rightarrow \max 119 \text{ tx/s}$

≈ 15 Tx/sec

In comparison ...

Visa: up to 24,000 Tx/sec (regularly 2,000 Tx/sec)

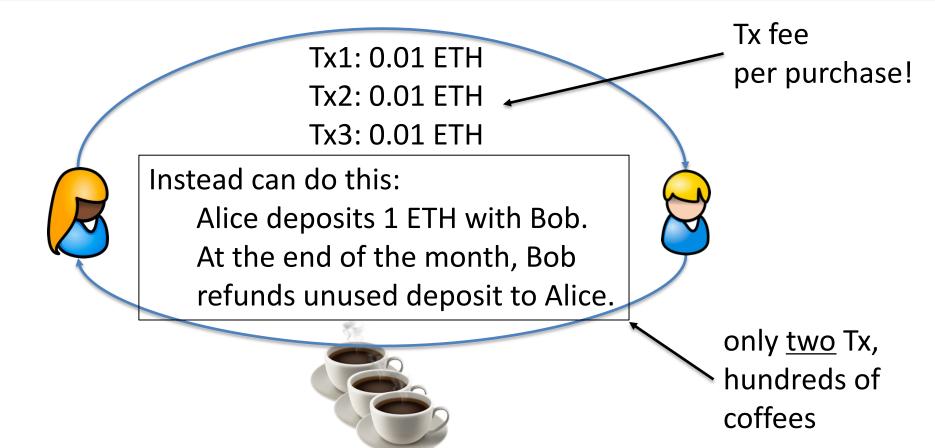
PayPal: 200 Tx/sec

Ethereum: 15 Tx/sec

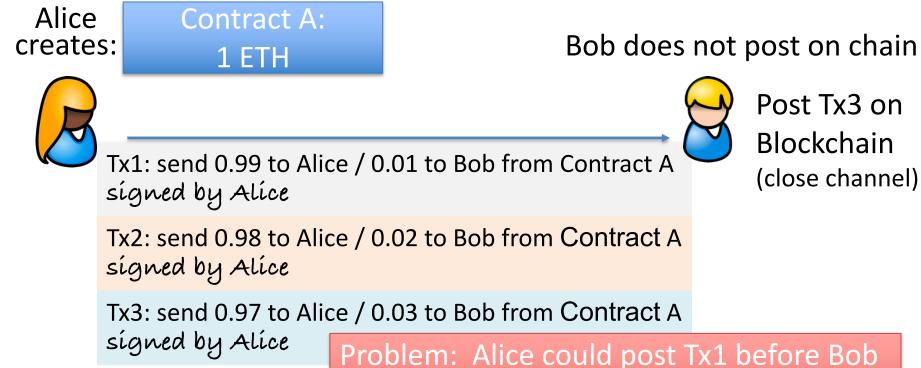
Bitcoin: 7 Tx/sec

Goal: scale up blockchain Tx speed

How to process more Tx per second

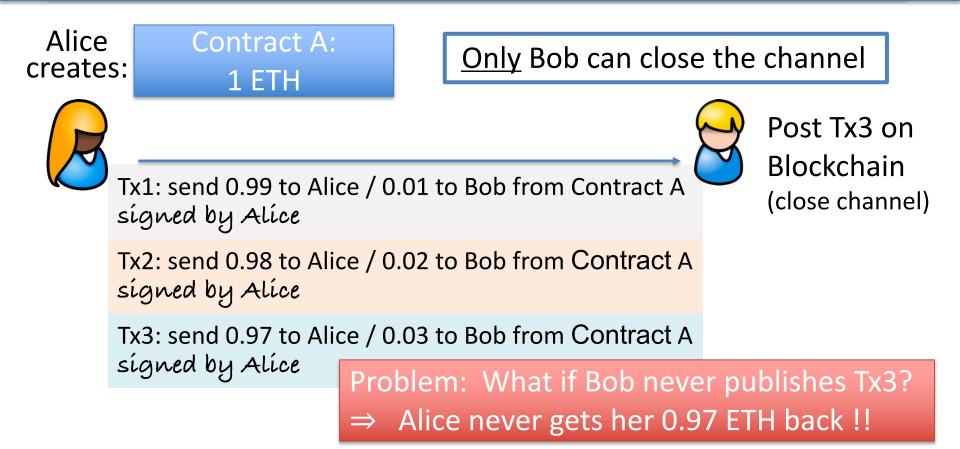

Many ideas:

• Use a faster consensus protocol


reduced composability

- Parallelize: split the chain into independent **shards**
- Rollup: move work somewhere else (next lecture)
- Today: payment channels, reduce the need to touch the chain

Payment Channels: the basic idea



Unidirectional Payment Channel

even though she bought three coffees.

A solution?

Unidirectional Payment Channel

Alice needs a way to ensure refund if Bob disappears

Solution: create a channel that can be closed in one of two ways

- Normal close Tx: Sends 0.97 to Alice / 0.03 to Bob ... requires signatures by both Alice and Bob.
- **Timelock Tx**: Sends 1 ETH to Alice

... requires signature by Alice, **but is accepted 7 days after channel is created**

Unidirectional Payment Channel

After 6 days:

• Bob can close channel by signing and posting Tx3.

After 7 days:

• Alice can close channel using timelock Tx, gets back her 1 ETH.

- Timelock period determines the lifespan of channel
- Once Alice sends the full 1 ETH to Bob, the Channel is "exhausted"

Payment Channel in Solidity

3 - contract SimplePaymentChannel address payable public sender; // The account sending payments. address payable public recipient; // The account receiving the payments. uint256 public expiration; // Timeout in case the recipient never closes. constructor (address payable _recipient, uint256 duration) public payable 11 🔻 sender = msg.sender; Alice creates contract with funds, recipient = _recipient; 14 expiration = now + duration;specifies timelock and recipient /// the recipient can close the channel at any time by presenting a /// signed amount from the sender. the recipient will be sent that amount. /// and the remainder will go back to the sender function close(uint256 amount, bytes memory signature) public { 21 require(msg.sender == recipient); verify Alice's signature on require(isValidSignature(amount, signature)); final amount. recipient.transfer(amount): 25 selfdestruct(sender); Only Bob can call close() !! /// if the timeout is reached without the recipient closing the channel, /// then the Ether is released back to the sender. function claimTimeout() public { require(now >= expiration); - send all funds to sender after timelock selfdestruct(sender):

Bidirectional Payment Channel

Alice and Bob want to move funds back and forth

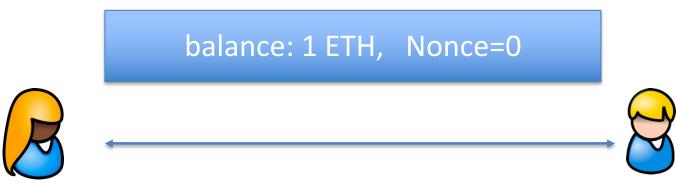


Two Unidirectional Channels?

Not as useful because Channels get exhausted

Bidirectional Payment Channel

On Ethereum: create a shared contract, each contributes 0.5 ETH:



Off chain: Bob sends 0.1 ETH to Alice by both signing new state:

new A: 0.6, Bob: 0.4, Nonce=1 State: Alice sig, Bob sig

Bidirectional Payment Channel

On chain contract does not change:

Off chain: Alice and Bob can move funds back and forth by sending updated state sigs to each other:

A: 0.3, Bob: 0.7, Nonce=7 Alice sig, Bob sig

(7th transfer)

Eventually: Alice wants to close payment channel

Alice does: sends latest balances and signatures to contract \Rightarrow starts challenge period (say, 3 days)

if Bob does nothing for 3 days:

⇒ funds disbursed according to Alice's submitted state
 if Bob submits signed state with a higher nonce (e.g., nonce=9)
 ⇒ funds disbursed according to Bob's submitted state

Watchtowers

Bidirectional channel requires Bob to constantly check that Alice did not try to close the channel with an old stale state

 \Rightarrow post latest state if she did

Watchtowers outsource this task

Trusted for availability

Bob sends latest state to watchtower.

Main points: summary

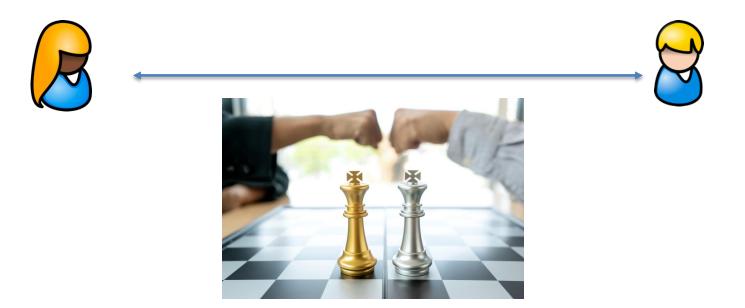
Payment channel between Alice and Bob:


- **One on-chain** Tx to create channel (deposit funds);
- Alice & Bob can send funds to each other off-chain
 ... as many Tx as they want;
- One on-chain Tx to close channel and disburse funds

 \Rightarrow only two on-chain Tx

A more general concept: State Channels

Smart contract that implements a game between Alice and Bob.


Begin game & end game: on chain. All moves are done off-chain.

State Channels

Can be used to implement any 2-party contract off chain!

two Tx on-chain: contract creation and termination

Bidirectional channels on Bitcoin

The Lightning Network

Bidirectional payment channels on Bitcoin

Problem: no updatable state in UTXOs \Rightarrow much harder to implement a bidirectional channel

Solution:

• When updating the channel to Alice's benefit, Alice gets TX that invalidates Bob's old state

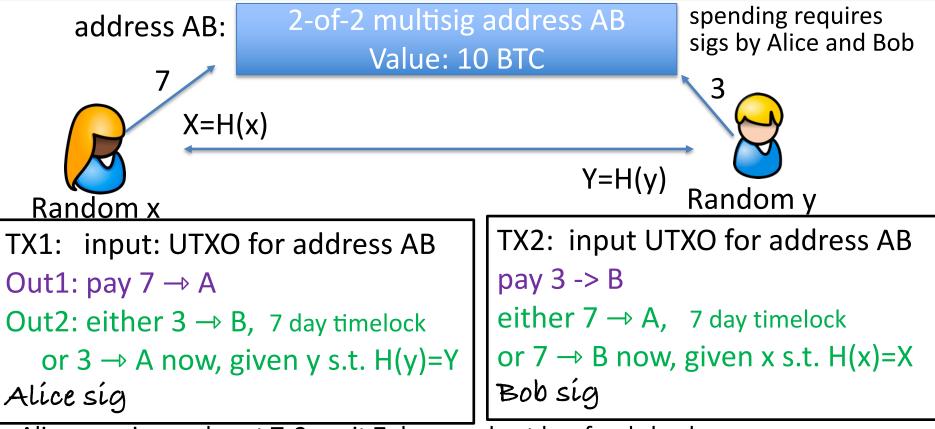
UTXO payment channel concepts

Will create UTXO that can be spent in one of two ways: (using IF opcode)

- Relative time-lock: UTXO contains a positive number t.
 A properly signed Tx can spend this UTXO
 t blocks (or more) after it was created (CLTV opcode)
- Hash lock: UTXO contains a hash image X.
 A properly signed Tx can spend this UTXO immediately by presenting x s.t. X = SHA256(x).

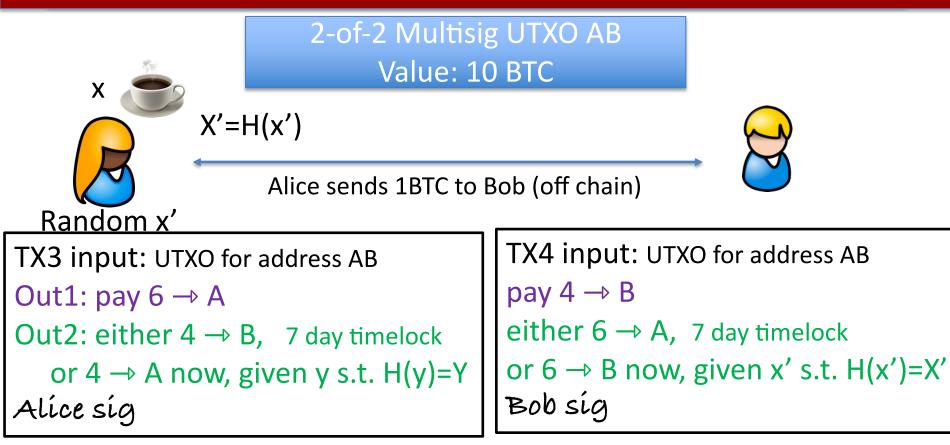
(x is called a hash preimage of X)

Example script


Example locktime redeem script: two ways to redeem UTXO

- OP_IF // Alice can redeem UTXO any time using a preimage
 OP_HASH256 <digest> OP_EQUALVERIFY // redeem by providing <digest> preimage,
 DUP HASH256 <AlicePKhash> EQVERIFY CHECKSIG // and Alice's signature
- OP_ELSE // Bob can redeem UTXO only after timelock
 <num> OP_CLTV OP_DROP // redeem <num> blocks after UTXO created,
 DUP HASH256 <BobPKhash> EQVERIFY CHECKSIG // and Bob's signature

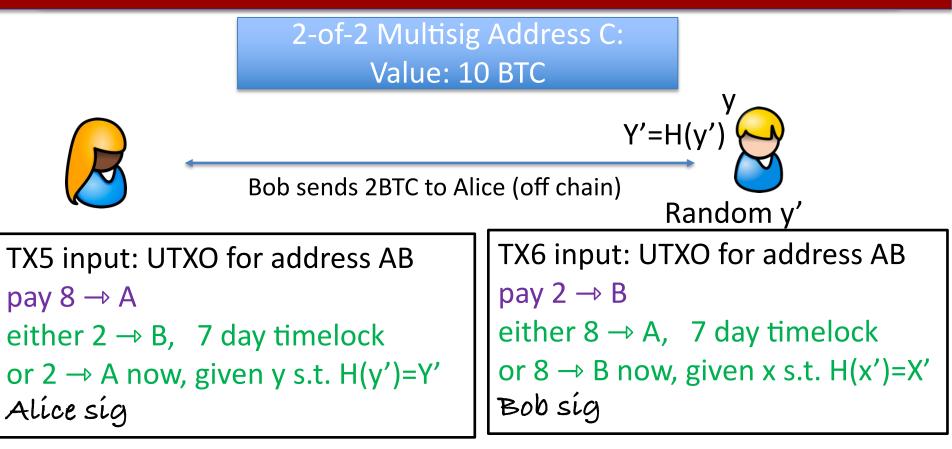
OP_ENDIF


This is called a **hash-timelock contract** (HTLC).

UTXO Payment Channel

Alice can sign and post Tx2, wait 7 days, and get her funds back

Payment Channel Update: Alice pays Bob



Alice has TX2,TX4, x, x'	Bob has TX1,TX3, y, <mark>x</mark>
TX2: (stale state)	TX1: (stale stale)
pay 3 → B	pay 7 → A
either 7 → A, 7 day timelock	either $3 \rightarrow B$, 7 day timelock
or 7 → B now, given x s.t. H(x)=X	or $3 \rightarrow A$ now, given y s.t. $H(y)=Y$
Bob síg	Alice sig
TX4: (current state)	TX3: (current state)
pay 4 → B	pay 6 → A
either 6 \rightarrow A, 7 day timelock	either 4 → B, 7 day timelock
or 6 → B now, given x' s.t. H(x')=X' Bob síg	or 4 → A now, given y s.t. H(y)=Y Alice sig

Alice has TX2,TX4, x, x'	Bob has TX1,TX3, y, <mark>x</mark>
TX2:The goopay $3 \rightarrow$ Alice can post Tx4 or Bobeither 7close channelor $7 \rightarrow E$ A gets 6,	can post Tx3 to chain and after 7 days
TX4: (current state) pay $4 \rightarrow B$ either $6 \rightarrow A$, 7 day timelock or $6 \rightarrow B$ now, given x' s.t. $H(x')=X'$ Bob sig	TX3: (current state) pay $6 \rightarrow A$ either $4 \rightarrow B$, 7 day timelock or $4 \rightarrow A$ now, given y s.t. H(y)=Y Alice sig

Alice has TX2,TX4, x, x'	Bob has TX1,TX3, y, <mark>x</mark>
TX2: (stale state)	TX1: (stale state)
pay 3 → B	pay 7 → A
either 7 → A, 7 day timelock	either 3 → B, 7 day timelock
or 7 \rightarrow B now, given x s.t. H(x)=X	or 3 \rightarrow A now, given y s.t. H(y)=Y
Bob sig	Alice sig
TX The bad case (Alice cheats):	
	Bob will use x to take all 10 BTC
eit	
or \Rightarrow sending x to Bob revokes the stale Tx2 held by Alice	
Bousiy	Alle Sug

Payment Channel Update: Bob pays Alice

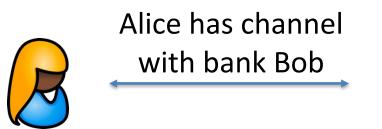
Alice has TX2,TX6, x, x', y	Bob has TX3,TX5, y, y', <mark>x</mark>
TX2:	TX3:
pay 3 → B	pay 6 → A
either 7 \rightarrow A, 7 day timelock	either 4 \rightarrow B, 7 day timelock
or 7 → B now, given x s.t. H(x)=X	or 4 → A now, given y s.t. H(y)=Y
Bob sig	Alice sig
TX6:	TX5:
pay 2 → B	pay 8 → A
either 8 \rightarrow A, 7 day timelock	either 2 → B, 7 day timelock
or 8 \rightarrow B now, given x s.t. H(x')=X'	or 2 \rightarrow A now, given y s.t. H(y')=Y'
Bob síg	Alice sig

Alice has TX2,TX6, x, x', y	Bob has TX3,TX5, y, y', <mark>x</mark>
TX2:	TX3:
pay 3 → B	pay 6 → A
either 7 \rightarrow A, 7 day timelock	either 4 \rightarrow B, 7 day timelock
or 7 → B now, given x s.t. H(x)=X	or 4 → A now, given y s.t. H(y)=Y
Bob sig	Alice sig
TX6:	TX5:
pay <mark>2 N P</mark>	
eith The bad case	e (Bob cheats):
or 8 Bob posts the stale Tx3 \Rightarrow A	Alice will use y to take all 10 BTC $= Y'$
Bob sig	Alice sig

Watchtowers again

Bidirectional channel requires Bob to constantly check that Alice did not try to close the channel with an old stale state

 \Rightarrow use hashlock value if she did



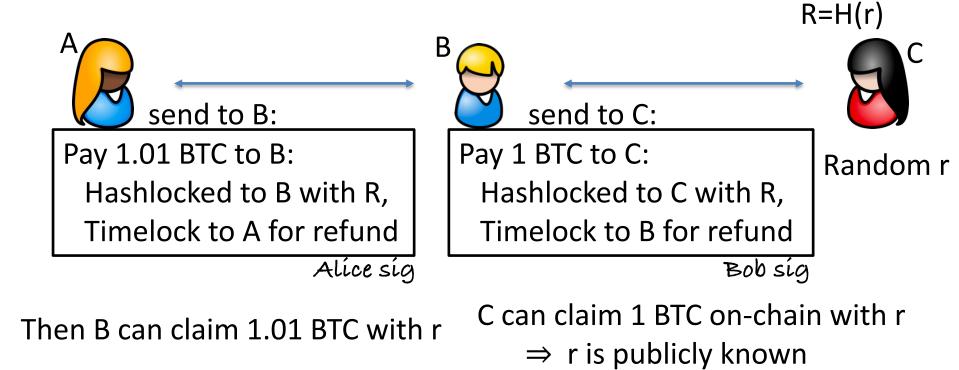
Trusted for availability

Bob needs to always send latest hashlock value to watchtower.

Multihop payments

Multi-hop payments

Carol has channel with bank Bob

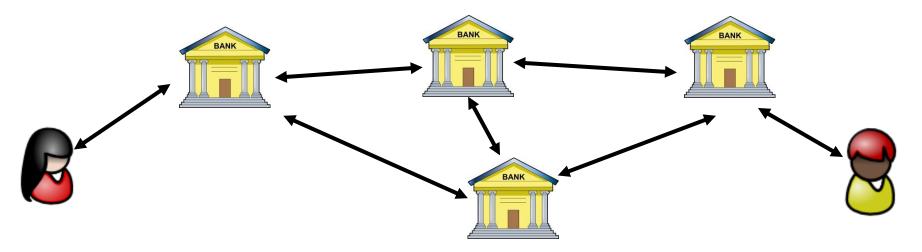


Alice wants to pay Carol 1 BTC through untrusted intermediary Bob

How: (i) Alice pays Bob 1.01 BTC, (ii) Bob pays Carol 1 BTC

The challenge: steps (i) and (ii) need to be atomic

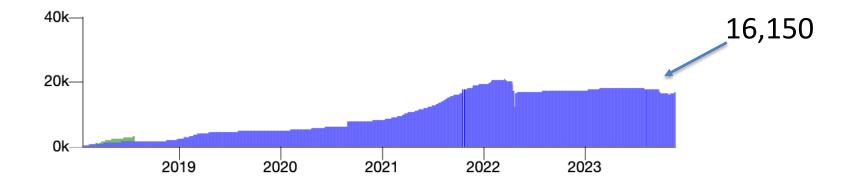
Multi-hop payments (briefly)



if Carol never claims, Alice & Bob get funds back after timelock

The lightning network

The network: lots of open bi-directional payment channels.


Alice wants to pay Bob: she finds a route to Bob through the graph

Many extensions possible: multi currency hubs, credit hubs, ...

nodes in lightning network (Nov. 2023)

Number of channels: 63K Network capacity: ≈\$205M

END OF LECTURE

Next lecture: scaling via Rollups