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The need for privacy in the financial system

Supply chain privacy:
• A manufacturer does not want to reveal 

how much it pays its supplier for parts.

Payment privacy:
• A company that pays its employees in crypto wants to keep list 

of employees and salaries private.
• Endusers need privacy for rent, donations, purchases

Business logic privacy:   Can the code of a smart contract be private?



Previous lecture

Neither Bitcoin nor Ethereum are private

Address 0x1654b0c3f62902d7A86237…

etherscan.io:

This lecture:  general tools for privacy on the blockchain



Succinct zero knowledge proofs:
an important tool for privacy on the blockchain

What is a zk-SNARK?



What is a zk-SNARK ?      (intuition)

SNARK:   a succinct proof that a certain statement is true

Example statement:   “I know an 𝑚 such that  SHA256(𝑚) = 0”

• SNARK:  the proof is “short” and “fast” to verify

 [if 𝑚 is 1GB then the trivial proof (the message 𝑚) is neither]

• zk-SNARK:  the proof “reveals nothing” about 𝑚



Commercial interest in SNARKs

Many more building applications that use SNARKs



Blockchain Applications I

Outsourcing computation:     (no need for zero knowledge)
 L1 chain quickly verifies the work of an off-chain service

Examples:
• Scalability:   proof-based Rollups (zkRollup)
 off-chain service processes a batch of Tx;  
 L1 chain verifies a succinct proof that Tx were processed correctly

• Bridging blockchains:  proof of consensus (zkBridge)
 Chain A produces a succinct proof about its state.  Chain B verifies.

To minimize gas: need a short proof, fast to verify



Blockchain Applications II

Some applications require zero knowledge (privacy):

• Private Tx on a public blockchain: 
• zk proof that a private Tx is valid  (Tornado cash,  Zcash,  IronFish,  Aleo)

• Compliance:
• Proof that a private Tx is compliant with banking laws (Espresso)

• Proof that an exchange is solvent in zero-knowledge (Proven)

More on these blockchain applications in a minute



Many non-blockchain applications

Blockchains drive the development of SNARKs 

  … but many non-blockchain applications benefit



Why is all this possible now?

The breakthrough:  new fast SNARK provers

• Proof generation time is linear (or quasilinear) in computation size

• Many beautiful ideas … next lecture

a large bibliography:     a16zcrypto.com/zero-knowledge-canon



What is a SNARK?



Review: arithmetic circuits
Fix a finite field    𝔽 = 0,… , 𝑝 − 1     for some prime  p>2.

Arithmetic circuit:     𝐶: 	𝔽𝑛	 ⇾ 	𝔽
• directed acyclic graph (DAG) where

internal nodes are labeled  +, −, or ×
inputs are labeled   1, 𝑥1, … , 𝑥𝑛

• defines an n-variate polynomial
with an evaluation recipe 

|𝐶| 	= # gates in 𝐶
𝑥1 𝑥2 1

+ −

×

𝑥1(𝑥1+ 𝑥2+ 1)(𝑥2− 1)



(preprocessing)  NARK:  Non-interactive ARgument of Knowledge

Preprocessing (setup):    S(𝐶)  ⇾  public parameters  (𝒑𝒑, 𝒗𝒑 )

Public arithmetic circuit:     𝐶(	𝒙, 𝒘	) 	⇾ 	 𝔽
public statement in 𝔽! secret witness in 𝔽"

Prover Verifier

𝒑𝒑, 𝒙,  𝒘 𝒗𝒑, 𝒙

accept or 
reject

proof  𝝅  that   𝐶(𝑥, 𝑤) = 0



(preprocessing)  NARK:  Non-interactive ARgument of Knowledge

A preprocessing NARK is a triple  (S,  P,  V):

• S(𝐶)  ⇾  public parameters  (𝑝𝑝, 𝑣𝑝)    for prover and verifier

• P(𝑝𝑝, 𝒙,𝒘)  ⇾  proof  𝜋

• V(𝑣𝑝, 𝒙, 𝝅)  ⇾  accept or reject

all algs. and adversary have 
access to a random oracle



NARK:  requirements  (informal)
Prover P(𝑝𝑝, 𝒙,𝒘) Verifier V (𝑣𝑝, 𝒙, 𝝅)

proof  𝜋 accept or reject

Complete:   ∀𝑥,𝑤: 	 𝐶(𝒙,𝒘) 	= 0    ⇒    Pr[  V(𝑣𝑝, 𝑥, P(𝑝𝑝, 𝒙, 𝒘)) = accept ] = 1

 Adaptively knowledge sound:   V accepts    ⇒    P “knows” 𝒘 s.t.  𝐶 𝒙,𝒘 = 0
 (an extractor 𝐸 can extract a valid 𝒘 from P)

Optional:  Zero knowledge:      (𝐶, 𝑝𝑝, 𝑣𝑝	, 𝒙, 𝜋)    “reveal nothing new” about 𝒘
 (witness exists  ⇒  can simulate the proof)   



SNARK: a Succinct ARgument of Knowledge

A succinct preprocessing NARK is a triple  (S, P, V):

• S(𝐶)  ⇾  public parameters  (𝑝𝑝, 𝑣𝑝)    for prover and verifier

• P(𝑝𝑝, 𝒙,𝒘)  ⇾  short proof  𝜋   ;        len(𝜋) = 𝑂+(	𝐩𝐨𝐥𝐲𝐥𝐨𝐠 𝑪 ) 

• V(𝑣𝑝, 𝒙, 𝝅)    fast to verify ;         time(V) = 𝑂+( 𝑥 , 𝐩𝐨𝐥𝐲𝐥𝐨𝐠 𝑪 )

V has no time to read 𝐶 !!short “summary” of circuit

[ for some SNARKs,  len 𝜋 = time 𝑉 = 𝑂+ 1   ]



SNARK: a NARC  (complete and knowledge sound)  that is succinct

zk-SNARK: a SNARK that is also zero knowledge

SNARK: a Succinct ARgument of Knowledge



Types of preprocessing Setup
Recall setup for circuit 𝐶:    S(𝐶; 𝑟)  ⇾  public parameters  (𝑝𝑝, 𝑣𝑝)

Types of setup:

 trusted setup per circuit:    S(𝐶; 𝑟) random 𝑟 must be kept secret from prover

  prover learns 𝑟   ⇒   can prove false statements

  trusted but universal (updatable) setup:  secret 𝑟 is independent of 𝐶

  𝑺 = 𝑆#!#$, 𝑆#!%&' : 	 𝑆#!#$ 𝜆; 𝑟 ⇾ 𝑔𝑝,      𝑆#!%&'(𝑔𝑝, 𝐶) ⇾ (𝑝𝑝, 𝑣𝑝)

 transparent setup:   S(𝐶) does not use secret data (no trusted setup)
    

one-time no secret data from prover

be
tt

er

random bits



Significant progress in recent years  (partial list)

size of
proof 𝜋 verifier time Setup

post-
quantum?

Groth’16 ≈ 200 Bytes
𝑂!(1)

≈ 1.5 ms
𝑂!(1)

trusted per 
circuit no

Plonk / Marlin ≈ 400 Bytes
𝑂!(1)

≈ 3 ms
𝑂!(1)

universal 
trusted setup no

Bulletproofs ≈ 1.5 KB
𝑂!(log |𝐶|)

≈ 3 sec
𝑂!(|𝐶|)

DLOG no

STARK ≈ 100 KB
𝑂!(log" |𝐶|)

≈ 10 ms
𝑂!(log |𝐶|)

collision
resistance yes

(for a circuit with 220 gates)
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Significant progress in recent years  (partial list)

size of
proof 𝜋 verifier time setup

post-
quantum?

Groth’16 ≈ 200 Bytes
𝑂!(1)

≈ 1.5 ms
𝑂!(1)

trusted per 
circuit no

Plonk / Marlin ≈ 400 Bytes
𝑂!(1)

≈ 3 ms
𝑂!(1)

universal 
trusted setup no

Bulletproofs ≈ 1.5 KB
𝑂!(log |𝐶|)

≈ 3 sec
𝑂!(|𝐶|)

transparent no

STARK ≈ 100 KB
𝑂!(log" |𝐶|)

≈ 10 ms
𝑂!(log |𝐶|)

transparent yes

⋮ ⋮(for a circuit with 220 gates)

Prover time is almost
linear in |𝐶|



How to define “knowledge soundness”
and “zero knowledge”?



Definitions:  (1) knowledge sound

Goal:   if V accepts  then  P “knows” 𝒘 s.t.  𝐶(𝒙,𝒘) 	= 0

What does it mean to ”know”  𝒘 ??

informal def:   P knows 𝒘,  if 𝒘 can be “extracted” from P

P



Definitions:  (1) knowledge sound  (simplified)

Formally:   a universal SNARK (S, P, V) is knowledge sound if

for every poly. time adversary  A = (A0, A1)  there exists
a poly. time extractor  𝐸𝑥𝑡  (that uses A as a black box)  s.t.

 if    𝑔𝑝 ⇽ Sinit( ),    (C, 𝑥, state) ⇽ A0(𝑔𝑝),    (𝑝𝑝, 𝑣𝑝) ⇽ Sindex(𝑔𝑝, 𝐶),

        𝜋 ⇽ A1(𝑝𝑝, 𝑥, state),     𝑤 ⇽ 𝐸𝑥𝑡(𝑔𝑝, 𝐶, 𝑥)

Then

 Pr[ V(vp, 𝑥, 𝜋) = accept  ⇒  𝐶(𝑥,𝑤) = 0 ] ≥ 1 −	𝜖      (for a negl. 𝜖)

extracted witness



Definitions:  (2) Zero knowledge

Where is
Waldo?



Definitions:  (2) Zero knowledge (simplified)

(S, P, V) is zero knowledge if for every 𝑥 ∈ 𝔽, 	
 proof 𝜋 “reveals nothing” about  𝒘,  other than its existence

What does it mean to “reveal nothing” ??

Informal def:  𝜋  “reveals nothing”  about  𝒘  if the verifier can
    generate 𝜋 by itself     ⟹     it learned nothing new from 𝜋 

(S, P, V) is zero knowledge if there is an efficient alg.  Sim 
 s.t.   (𝑝𝑝, 𝑣𝑝, 𝜋) ⇽ Sim(𝐶, 𝑥)  “look like” the real  𝑝𝑝,𝑣𝑝  and  𝜋.

Main point:  Sim(𝐶,x) simulates  𝜋 without knowledge of 𝒘



Definitions:  (2) Zero knowledge (simplified)

Formally:   (S, P, V) is (honest verifier) zero knowledge for a circuit 𝐶 

 if there is an efficient simulator  Sim  such that

 for all 𝑥 ∈ 𝔽,   s.t.  ∃𝑤: 𝐶 𝑥,𝑤 = 0    the distribution:

  (𝐶, 𝑝𝑝, 𝑣𝑝 , 𝑥, 𝜋):  where   (𝑝𝑝,𝑣𝑝) ⇽ S(𝐶) ,   𝜋 ⇽ P(𝑝𝑝 , 𝑥, 𝒘)

 is indistinguishable from the distribution:
  (𝐶, 𝑝𝑝, 𝑣𝑝, 𝑥, 𝜋):  where   (𝑝𝑝,𝑣𝑝, 𝜋) ⇽ Sim(𝐶, 𝑥)

Main point:  Sim(𝐶,x) simulates  𝜋 without knowledge of 𝒘



How to build a zk-SNARK?
Recall:  prover generates a short proof that is fast to verify

How to build a zk-SNARK ??

Next lecture



Launched on the Ethereum blockchain on May 2020  (v2)

Applications of SNARKs:
(1)  Tornado cash:   a zk-based mixer



Tornado Cash:  a ZK-mixer

account

MIX

Tornado.cash
contract

fresh
address

(1000 DAI)

???

1000 DAI NFT
market

buy NFT
privately

1000 DAI

1000 DAI

A common denomination (1000 DAI) is needed to prevent linking
Alice to her fresh address using the deposit/withdrawal amount

1000 DAI



The tornado cash contract   (simplified)

nf1

nullifiers

explicit list:
one entry per spent coin

coins
Merkle

root

Treasury:  300 DAI100 DAI pool:
   each coin = 100 DAI

nf2
(32 bytes)Currently:

• three coins in pool
• contract has 300 DAI
• two nullifiers stored contract state

next = 4

H1, H2:  R ⇾ {0,1}256 

C1  C2  C3  0   0 … 0

public list of coins

tree of
height 20

(220 leaves)

Coins
Merkle

root

CRHF



Tornado cash: deposit     (simplified)

nf1

nullifiers

coins
Merkle

root

Treasury:  300 DAI100 DAI pool:
   each coin = 100 DAI

nf2
(32 bytes)

C1  C2  C3  0   0 … 0

Coins
Merkle

root

tree of
height 20

(220 leaves)

Alice deposits 100 DAI:

explicit list:
one entry per spent coin

public list of coins
Build Merkle proof for leaf #4:
     MerkleProof(4)      (leaf=0)
choose random  k, r  in  R
set  C4 = H1(k, r)

H1, H2:  R ⇾ {0,1}256 

contract state

next = 4
100 DAI

 C4 , MerkleProof(4)



Tornado cash: deposit     (simplified)

coins
Merkle

root
(32 bytes)

tree of
height 20

(220 leaves)

100 DAI
   C4 ,  MerkleProof(4)

Tornado contract does:

(1) verify  MerkleProof(4)  with 
respect to current stored root

(2) use C4 and MerkleProof(4)  to
compute updated Merkle root

(3) update state

next = 4

H1, H2:  R ⇾ {0,1}256 

Tornado contract C1  C2  C3  0   0 … 0

public list of coins

Coins
Merkle

root



Tornado cash: deposit     (simplified)

coins
Merkle

root
(32 bytes)

C1  C2  C3  C4  0 … 0

updated
Merkle

root

tree of
height 20

(220 leaves)

100 DAI
   C4 ,  MerkleProof(4)

public list of coins

Tornado contract does:

(1) verify  MerkleProof(4)  with 
respect to current stored root

(2) use C4 and MerkleProof(4)  to
compute updated Merkle root

(3) update state

next = 4

H1, H2:  R ⇾ {0,1}256 

Tornado contract



Tornado cash: deposit     (simplified)

nf1

nullifiers

updated
Merkle

root

Treasury:  400 DAI100 DAI pool:
   each coin = 100 DAI

nf2
(32 bytes)

100 DAI
C4 , MerkleProof(4)

C1  C2  C3  C4  0 … 0

updated
Merkle

root

tree of
height 20

(220 leaves)

public list of coinsnote:  (k, r)
Alice keeps secret
(one note per coin)

Every deposit:  new Coin 
added sequentially to tree

an observer sees who
owns which leaves

Alice deposits 100 DAI:

updated contract state

next = 5



Tornado cash: withdrawal     (simplified)

nf1

nullifiers

coins
Merkle

root

Treasury:  400 DAI100 DAI pool:
   each coin = 100 DAI

nf2
(32 bytes)

Withdraw coin #3
to addr A:

C1  C2  C3  C4  0 … 0

Merkle
root

tree of
height 20

(220 leaves)

public list of coins

has note= (k’, r’)

set nf = H2(k’)

H1, H2:  R ⇾ {0,1}256 

next = 5

contract state

Bob proves “I have a note for some leaf in the coins tree, and its nullifier is nf”
(without revealing which coin)



Tornado cash: withdrawal     (simplified)

Withdraw coin #3 to addr A:

C1  C2  C3  C4  0 … 0

Merkle
root

tree of
height 20

(220 leaves)

has note= (k’, r’) set nf = H2(k’)

Bob builds zk-SNARK proof  𝜋  for 
 public statement  x = (root,  nf,  A)
 secret witness  w = (k’, r’,  C3 , MerkleProof(C3) )
where  Circuit(x,w)=0 iff:

(i) C3 = (leaf #3 of root),   i.e.   MerkleProof(C3) is valid,

(ii) C3 = H1(k’, r’),  and

(iii) nf = H2(k’).

H1, H2:  R ⇾ {0,1}256 

(address A not used in Circuit)



Tornado cash: withdrawal     (simplified)

Withdraw coin #3 to addr A:

C1  C2  C3  C4  0 … 0

Merkle
root

tree of
height 20

(220 leaves)

has note= (k’, r’) set nf = H2(k’)

Bob builds zk-SNARK proof  𝜋  for 
 public statement  x = (root,  nf,  A)
 secret witness  w = (k’, r’,  C3 , MerkleProof(C3) )

H1, H2:  R ⇾ {0,1}256 

The address A is part of the statement to ensure that a miner cannot change A to 
its own address and steal funds 

Assumes the SNARK is non-malleable:
          adversary cannot use proof 𝜋 for x to build a proof 𝜋’ for some “related” x’
 (e.g., where in x’ the address A is replaced by some A’)



Tornado cash: withdrawal     (simplified)

nf1

nullifiers

coins
Merkle

root

Treasury:  400 DAI100 DAI pool:
   each coin = 100 DAI

nf2
(32 bytes)

C1  C2  C3  C4  0 … 0

tree of
height 20

(220 leaves)

public list of coins
Bob’s ID and coin C3

are not revealed

Contract checks (i) proof  𝜋 is valid for (root, nf, A), and
(ii)  nf  is not in the list of nullifiers  

nf,  proof 𝜋,  A
(over Tor)

Merkle
root

H1, H2:  R ⇾ {0,1}256 

contract state

next = 5

Withdraw coin #3
to addr A:



Tornado cash: withdrawal     (simplified)

nf1

nullifiers

coins
Merkle

root

Treasury:  300 DAI100 DAI pool:
   each coin = 100 DAI

nf2
(32 bytes)

C1  C2  C3  C4  0 … 0

tree of
height 20

(220 leaves)

public list of coins

nf,  proof 𝜋,  A
(over Tor)

nf

nf and 𝜋 reveal nothing about which coin was spent.

But, coin #3 cannot be spent again, because  nf = H2(k’)  is now nullified. 

… but observer does not 
    know which are spent

100 DAI
to address A

Merkle
root

H1, H2:  R ⇾ {0,1}256 

next = 5

contract state

Withdraw coin #3
to addr A:



Who pays the withdrawal gas fee?
Problem:   how does Bob pay for gas for the withdrawal Tx?
• If paid from Bob’s address, then fresh address is linked to Bob

Tornado’s solution:   Bob uses a relay

nf,  proof 𝜋,  A
(over Tor)

(100-gas) DAI
to address A

relay

nf, proof 𝜋,  A
and gas

tornado
contract

gas

Note:  relay and Tornado also charge a fee



Tornado Cash:  the UI

After deposit:  get a note Later, use note to withdraw

enter note here

address

(wait before withdrawing)



Tornado trouble … U.S. sanctions

The Ronin-bridge hack (2022):
• In late March:  ≈600M USD stolen … $80M USD sent to Tornado
• April:  Lazarus Group suspected of hack
• August:   “U.S. Treasury Sanctions Virtual Currency Mixer Tornado Cash”

• Lots of collateral damage … and two lawsuits

Tornado

The lesson:  complete anonymity in the 
 payment system is problematic



Sanctions

“U.S. persons would not be prohibited by U.S. sanctions 
regulations from copying the open-source code and making it 
available online for others to view, as well as discussing, teaching 
about, or including open-source code in written publications, 
such as textbooks, absent additional facts”
        U.S. Treasury FAQ, Sep. 2022 

https://home.treasury.gov/policy-issues/financial-sanctions/faqs/added/2022-09-13


Designing a compliant Tornado??

(1) deposit filtering:  ensure incoming funds are not sanctioned

 Chainalysis  SanctionsList  contract:

function isSanctioned(address addr) public view returns (bool) {
          return sanctionedAddresses[addr] == true ;
}

Reject funds coming from a sanctioned address.

Difficulties:  (1) centralization,  (2) slow updates



Designing a compliant Tornado??
(2) Withdrawal filtering:  at withdrawal, require a ZK proof that 

the source of funds is not currently on sanctioned list.

How?   

• modify the way Tornado computes Merkle leaves during deposit 
to include msg.sender.

  in our example Alice sets:     C4  =  [ H1(k, r),  msg.sender ]
• During withdrawal Bob proves in ZK that msg.sender in his leaf is 

not currently on sanctions list.



Designing a compliant Tornado??
(3) Viewing keys:  at withdrawal, require nullifier to include an 
encryption of deposit msg.sender under government public key.

How?       Merkle leaf  C4  is computed as on previous slide.

• During withdrawal Bob sets nullifier   nf = [ H2(k’),  𝑐𝑡,  𝜋 ]
where (i)   𝑐𝑡 = Enc(pk,  msg.sender)    and  
 (ii)  𝜋  is ZK proof that 𝑐𝑡 is computed correctly

⇒ As needed, government can trace funds through Tornado
• lots of problems with this design …    



Other private Tx projects

Zcash / IronFISH:    private payments
• L1 blockchains that extend Bitcoin, similar use of Nullifiers.
• Support for any value Tx and in-system transfers.

Aztec / Aleo:
• Support for private Tx interacting with a public smart contract.
• Aleo: an L1 blockchain.     Aztec:  runs on top of Ethereum. 



END  OF  LECTURE

Next lecture:   how to build a SNARK



Further topics

Privately communicating with the blockchain:   Nym
• How to privately compensate proxies for relaying traffic

Next lecture:   how to build a SNARK


