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The need for privacy in the financial system

Supply chain privacy:
• A manufacturer does not want to reveal 

how much it pays its supplier for parts.

Payment privacy:
• A company that pays its employees in crypto wants to keep list 

of employees and salaries private.
• Endusers need privacy for rent, donations, purchases

Business logic privacy:   Can the code of a smart contract be private?



The need for privacy in the financial system

The bo+om line:

 Blockchains cannot reach their full poten8al
 without some form of private transac8ons



Types of Privacy

Pseudonymity:  (weak privacy)
• Every user has a long-term consistent pseudonym (e.g. reddit)

• Pros:  reputaFon
• Cons:   link to real-world idenFty can leak over Fme

Full anonymity:  User’s transacFons are unlinkable
• No one can tell if two transacFons are from the same address



A difficult ques6on:  privacy from who?
No privacy:

Everyone can see all 
transactions

Privacy from the public:
Only a trusted operator 

can see transactions

Semi-full privacy:
only “local” law enforcement  

can see transactions

full privacy:
no one can see transactions



Nega6ve aspects of complete privacy
How to prevent criminal activity?   

The challenge:
• How to support positive applications of 

private payments, but prevent the negative ones?

• Can we ensure legal compliance while preserving privacy?

• Yes!         The key technology:  zero knowledge proofs



The base systems are definitely not  …

Are Bitcoin and Ethereum Private?



Privacy in Ethereum?
• Every account balance is public
• For Dapps:  code and internal state are public
• All account transactions are linked to account

Address 0x1654b0c3f62902d7A86237…

etherscan.io:



Privacy in Bitcoin?

from addresses    amounts to addresses               amounts

Transac6on data can be used 
to link an address to a physical 
iden6ty
    (chainalysis)

Inputs: A1:4,   A2: 5           out:  B:6,   A3:3

Alice can have many addresses (creating address is free)

Alice’s addresses

Change address

Bob’s address



Linking an addresses to an identity

Alice buys a book from a merchant:
• Alice learns one of merchant’s address (B)
• Merchant links three addresses to Alice  (A1, A2, A3)

Alice uses an exchange  (ETH ↔ USD)

• BSA:   a US exchange must do KYC   (know your customer)
   … collect and verify Alice’s ID
• Exchange links Alice to her addresses  (A1, A2, A3) 

inputs: A1: 4,  A2: 5           outputs: B: 6,  A3: 3



De-anonymization strategy:  Idioms of use
A general strategy for de-anonymizing Bitcoin addresses

Heuristic 1:
 Two addresses are input to a TX
   ⇒   both addresses are controlled by same entity



Heuristic 2:
 Change address is controlled by the same user as input address
 Which is the change address?

• Heuristic: a new address that receives less than every input

De-anonymization strategy:  Idioms of use



A Bitcoin experiment     [Meiklejohn, et al.]

step 1:   Heuristic 1 and 2     ⇒     3.3M clusters

step 2:   1070 addresses identified by interacting with merchants
• Coinbase, Kraken, …

step 3:  now 15% of all addresses identified
• Learn total assets for all clusters

Commercial efforts:  Chainalysis,  EllipFc, … 



Private coins on a Public Blockchain



mixer
address: 

M

Attempt 1:  simple mixing
fresh addr  X
from Alice TLS

1 ETH to M
from Alice

1 ETH to M
from Bob

1 ETH to M
from Carol

blockchain

fresh addr  Y
from Bob TLS

fresh addr  Z
from Carol TLS

Send:
1 ETH to X
1 ETH to Y
1 ETH to Z

Observer knows Y belongs to one of  {Alice, Bob, Carol}  but does not know which one
 ⟹  anonymity set of size 3.      

has 3 ETH

Problems:  (i) mixer M knows shuffle,     (ii) mixer can abscond with 3 ETH !! 



Increasing the anonymity set

Mixer
M1

addr X X’

M1:  mix 𝑛 inputs from 𝑛 users    ⇒   X’ has anonymity set size = 𝑛     
M2:  mix output from 𝑚 mixers   ⇒   X’’ has anonymity set size = 𝑛×𝑚

Mixer
M2

X’’

Privacy: as long as one of M1 or M2 are honest



Secure mixing without a mixer?

Problem:  Mixer can abscond with funds or reveal the shuffle.

Can we securely mix without a trusted mixer?       Answer:  yes!

• on Bitcoin: CoinJoin   (used by, e.g., Wasabi wallet)

• on Ethereum:  Tornado cash,  Privacy Pools,  …

  … a single mixer using ZK proofs – next lecture



CoinJoin:  Bitcoin Mixing without Mixer

A1: 5,   A3 (change addr)
A2 (post mix address over Tor) A1: 5,   A3

B1: 3,   B3
C1: 2,   C3

B2, A2, C2 

The setup:   Alice, Bob, and Carol want to mix together.
      Alice owns UTXO  A1:5,  Bob owns UTXO B1:3,  Carol owns C1:2

B1: 3,   B3 (change addr)
B2 (post mix address over Tor)

(same as Alice and Bob)
public forum

mix
addresses



CoinJoin:  Bitcoin Mixing without Mixer

CoinJoin TX:  all three prepare and sign the following Tx:

inputs (not private): A1: 5,  B1: 3,  C1: 2

outputs (private): B2: 2,  A2: 2,  C2: 2

outputs (not private): A3: 3,  B3: 1

Mixed UTXOs all have same value = min of inputs   (2 in this case)

All three post sigs on Pastebin  ⇒  one of them posts Tx on chain.

mix addresses



Coinjoin drawbacks

In practice:  each CoinJoin Tx mixes about 40 inputs
• Large Tx:   40 inputs,  80 outputs

All participants must sign CoinJoin Tx for it to be valid
 ⇒  ensures all of them approve the CoinJoin Tx
          … but any one of them can disrupt the process



Private Tx on a public blockchain

Beyond simple mixing



Can we have private transactions
on a public blockchain?

Naïve reasoning:  

 universal verifiability  ⇒    transac:on data must be public

 otherwise, how we can verify Tx ??

crypto magic   ⇒    private Tx on a publicly verifiable blockchain

Crypto tools:   commitments and zero knowledge proofs



A paradigm for Private Tx
public blockchain

committed state Tx 𝜋 updated 
commi>ed state

anyone can 
verify 𝝅

(reveals nothing about Tx data or state)

Committed data:   short (hiding) commitment on chain
Proof 𝝅:   succinct zero-knowledge proof  that

(1) committed Tx data is consistent with committed current state, and
(2) committed updated state is correct

committed 
Tx data



Review: cryptographic commitments

Cryptographic commitment:  emulates an envelope

Many applications:   e.g.,  a DAPP for a sealed bid auction

• Every participant commits to its bid,

• Once all bids are in, everyone opens their commitment

data data



Cryptographic Commitments

Syntax:  a commitment scheme is two algorithms

• commit(msg,  r)  ⇾   com

• verify(msg, com, r)   ⇾  accept or  reject

 anyone can verify that commitment was opened correctly

commitment stringsecret randomness



Commitments: security proper6es
• binding:   Bob cannot produce two valid openings for com
  More precisely:  no efficient adversary can produce   
     com,  (m1, r1),  (m2, r2)

  such that verify(m1, com, r1) = verify(m2, com, r2) = accept

     and   m1 ≠ m2.

• hiding:  com reveals nothing about committed data

  commit(m, r) ⇾ com,    and r is sampled uniformly in a set 𝑅,
  then    com is statistically independent of m



Example:  hash-based commitment
Fix a hash func>on    𝐻: 	𝑀	×	𝑅	 ⇾ 	𝐶	 (e.g.,  SHA256)
  where 𝐻 is collision resistant,  and   |𝑅| ≫ |𝐶|

• commit(𝑚 ∈ 𝑀, 	𝑟 ⇽ 𝑅):       com	= 𝐻(𝑚, 𝑟)

• verify(𝑚,	com, 𝑟):    accept if   com = 𝐻(𝑚, 𝑟)

binding: follows from collision resistance of 𝐻
hiding: follows from a mild assump>on on 𝐻



Succinct zero knowledge proofs:
an important tool for privacy on the blockchain

What is a zk-SNARK?



What is a zk-SNARK ?      (intuition)

SNARK:   a succinct proof that a certain statement is true

Example statement:   “I know an 𝑚 such that  SHA256(𝑚) = 0”

• SNARK:  the proof is “short” and “fast” to verify

 [if 𝑚 is 1GB then the trivial proof (the message 𝑚) is neither]

• zk-SNARK:  the proof “reveals nothing” about 𝑚



Commercial interest in SNARKs

Many more building applications that use SNARKs



Blockchain Applica6ons I

Outsourcing computa/on:     (no need for zero knowledge)
 L1 chain quickly verifies the work of an off-chain service

Examples:
• Scalability:   proof-based Rollups (zkRollup)
 off-chain service processes a batch of Tx;  
 L1 chain verifies a succinct proof that Tx were processed correctly

• Bridging blockchains:  proof of consensus (zkBridge)
 Chain A produces a succinct proof about its state.  Chain B verifies.

To minimize gas: need a short proof, fast to verify



Blockchain Applications II

Some applications require zero knowledge (privacy):

• Private Tx on a public blockchain: 
• zk proof that a private Tx is valid  (Tornado cash,  Zcash,  IronFish,  Aleo)

• Compliance:
• Proof that a private Tx is compliant with banking laws (Espresso)

• Proof that an exchange is solvent in zero-knowledge (Raposa)

More on these blockchain applications in a minute



Many non-blockchain applications

Blockchains drive the development of SNARKs 

  … but many non-blockchain applica8ons benefit



Arithmetic circuits
• Fix a finite field    𝔽 = 0,… , 𝑝 − 1     for some prime  p>2.

• Arithme/c circuit:     𝐶: 	𝔽𝑛	 ⇾ 	𝔽
• directed acyclic graph (DAG) where

internal nodes are labeled  +, −, or ×
inputs are labeled   1, 𝑥1, … , 𝑥𝑛

• defines an n-variate polynomial
with an evalua>on recipe 

• |𝐶| 	= # gates in 𝐶 𝑥1 𝑥2 1

+ −

×

𝑥1(𝑥1+ 𝑥2+ 1)(𝑥2− 1)



Interes6ng arithme6c circuits

Examples:

• Chash(h, m):   outputs 0 if   SHA256(m) = h ,   and ≠0 otherwise

 Chash(h, m) = (h – SHA256(m))  ,  |Chash| ≈ 20K gates

• Csig(pk, m, σ): outputs  0  if σ is a valid ECDSA signature 
  on m with respect to pk



(preprocessing)  NARK:  Non-interactive ARgument of Knowledge

Preprocessing (setup):    S(𝐶)  ⇾  public parameters  (𝒑𝒑, 𝒗𝒑 )

Public arithmetic circuit:     𝐶(	𝒙, 𝒘	) 	⇾ 	 𝔽

public statement in 𝔽! secret witness in 𝔽"

Prover Verifier

𝒑𝒑, 𝒙,  𝒘 𝒗𝒑, 𝒙

accept or 
reject

proof  𝝅  that   𝐶(𝑥, 𝑤) = 0



A preprocessing NARK is a triple  (S,  P,  V):

• S(𝐶)  ⇾  public parameters  (𝑝𝑝, 𝑣𝑝)    for prover and verifier

• P(𝑝𝑝, 𝒙,𝒘)  ⇾  proof  𝜋

• V(𝑣𝑝, 𝒙, 𝝅)  ⇾  accept or reject

(preprocessing)  NARK:  Non-interac>ve ARgument of Knowledge



NARK:  requirements  (informal)
Prover P(𝑝𝑝, 𝒙,𝒘) Verifier V (𝑣𝑝, 𝒙, 𝝅)

proof  𝜋
accept or reject

Complete:   ∀𝑥,𝑤: 	 𝐶(𝒙,𝒘) 	= 0    ⇒    Pr[  V(𝑣𝑝, 𝑥, P(𝑝𝑝, 𝒙, 𝒘)) = accept ] = 1

knowledge sound:   V accepts    ⇒    P “knows” 𝒘 s.t.  𝐶 𝒙,𝒘 = 0
     (an extractor 𝐸 can extract a valid 𝒘 from P)

Optional:  Zero knowledge:      (𝐶, 𝑝𝑝, 𝑣𝑝	, 𝒙, 𝜋)    “reveal nothing” about 𝒘   



SNARK: a Succinct ARgument of Knowledge

A succinct preprocessing NARK is a triple  (S, P, V):

• S(𝐶)  ⇾  public parameters  (𝑝𝑝, 𝑣𝑝)    for prover and verifier

• P(𝑝𝑝, 𝒙,𝒘)  ⇾  short proof  𝜋   ;        len(𝜋) = 𝑂.(	𝐩𝐨𝐥𝐲𝐥𝐨𝐠 𝑪 ) 

• V(𝑣𝑝, 𝒙, 𝝅)    fast to verify ;         Fme(V) = 𝑂.( 𝑥 , 𝐩𝐨𝐥𝐲𝐥𝐨𝐠 𝑪 )

V has no time to read 𝐶 !!short “summary” of circuit

[ for some SNARKs,  len 𝜋 = time 𝑉 = 𝑂. 1   ]



SNARK: a NARC  (complete and knowledge sound)  that is succinct

zk-SNARK: a SNARK that is also zero knowledge

SNARK: a Succinct ARgument of Knowledge



The trivial SNARK is not a SNARK

(a)  Prover sends  𝒘  to verifier,  
(b)  Verifier checks if   𝐶(𝒙,𝒘) = 	0   and accepts if so.

Problems with this:

(1)   𝒘  might be long:   we want a “short” proof

(2)   compuFng 𝐶(𝒙,𝒘)	may be hard:   we want a “fast” verifier

(3)   𝒘  might be secret:  prover might not want to reveal  𝒘  to verifier



The SNARK zoo … next lecture

STARK

Breakdown

Orion

Bulletproofs

Halo2 Plonk

Marlin

Sonic

Groth16 Gemini

DARKPlonky2

Open:  one SNARK to rule them all
Spartan

Nova Hyperplonk

Hyrax ⋮



SNARKs in practice

DSL
program
Circom,

ZoKrates,
Leo,
Zinc,
Cairo,
Noir,

…

SNARK 
backend
prover

𝑥,  witness

𝜋

heavy
computation

domain specific 
language

SNARK
friendly
format
circuit,
R1CS,
AIR,

EVM 
byte code

…

compiler



END  OF  LECTURE

Next lecture:  
more on zk-SNARKs and their applications


