
Privacy on the Blockchain

CS251 Fall 2023
(cs251.stanford.edu)

Dan Boneh

[project #4 posted]

The need for privacy in the financial system

Supply chain privacy:
• A manufacturer does not want to reveal

how much it pays its supplier for parts.

Payment privacy:
• A company that pays its employees in crypto wants to keep list

of employees and salaries private.
• Endusers need privacy for rent, donations, purchases

Business logic privacy: Can the code of a smart contract be private?

The need for privacy in the financial system

The bo+om line:

 Blockchains cannot reach their full poten8al
 without some form of private transac8ons

Types of Privacy

Pseudonymity: (weak privacy)
• Every user has a long-term consistent pseudonym (e.g. reddit)

• Pros: reputaFon
• Cons: link to real-world idenFty can leak over Fme

Full anonymity: User’s transacFons are unlinkable
• No one can tell if two transacFons are from the same address

A difficult ques6on: privacy from who?
No privacy:

Everyone can see all
transactions

Privacy from the public:
Only a trusted operator

can see transactions

Semi-full privacy:
only “local” law enforcement

can see transactions

full privacy:
no one can see transactions

Nega6ve aspects of complete privacy
How to prevent criminal activity?

The challenge:
• How to support positive applications of

private payments, but prevent the negative ones?

• Can we ensure legal compliance while preserving privacy?

• Yes! The key technology: zero knowledge proofs

The base systems are definitely not …

Are Bitcoin and Ethereum Private?

Privacy in Ethereum?
• Every account balance is public
• For Dapps: code and internal state are public
• All account transactions are linked to account

Address 0x1654b0c3f62902d7A86237…

etherscan.io:

Privacy in Bitcoin?

from addresses amounts to addresses amounts

Transac6on data can be used
to link an address to a physical
iden6ty
 (chainalysis)

Inputs: A1:4, A2: 5 out: B:6, A3:3

Alice can have many addresses (creating address is free)

Alice’s addresses

Change address

Bob’s address

Linking an addresses to an identity

Alice buys a book from a merchant:
• Alice learns one of merchant’s address (B)
• Merchant links three addresses to Alice (A1, A2, A3)

Alice uses an exchange (ETH ↔ USD)

• BSA: a US exchange must do KYC (know your customer)
 … collect and verify Alice’s ID
• Exchange links Alice to her addresses (A1, A2, A3)

inputs: A1: 4, A2: 5 outputs: B: 6, A3: 3

De-anonymization strategy: Idioms of use
A general strategy for de-anonymizing Bitcoin addresses

Heuristic 1:
 Two addresses are input to a TX
 ⇒ both addresses are controlled by same entity

Heuristic 2:
 Change address is controlled by the same user as input address
 Which is the change address?

• Heuristic: a new address that receives less than every input

De-anonymization strategy: Idioms of use

A Bitcoin experiment [Meiklejohn, et al.]

step 1: Heuristic 1 and 2 ⇒ 3.3M clusters

step 2: 1070 addresses identified by interacting with merchants
• Coinbase, Kraken, …

step 3: now 15% of all addresses identified
• Learn total assets for all clusters

Commercial efforts: Chainalysis, EllipFc, …

Private coins on a Public Blockchain

mixer
address:

M

Attempt 1: simple mixing
fresh addr X
from Alice TLS

1 ETH to M
from Alice

1 ETH to M
from Bob

1 ETH to M
from Carol

blockchain

fresh addr Y
from Bob TLS

fresh addr Z
from Carol TLS

Send:
1 ETH to X
1 ETH to Y
1 ETH to Z

Observer knows Y belongs to one of {Alice, Bob, Carol} but does not know which one
 ⟹ anonymity set of size 3.

has 3 ETH

Problems: (i) mixer M knows shuffle, (ii) mixer can abscond with 3 ETH !!

Increasing the anonymity set

Mixer
M1

addr X X’

M1: mix 𝑛 inputs from 𝑛 users ⇒ X’ has anonymity set size = 𝑛
M2: mix output from 𝑚 mixers ⇒ X’’ has anonymity set size = 𝑛×𝑚

Mixer
M2

X’’

Privacy: as long as one of M1 or M2 are honest

Secure mixing without a mixer?

Problem: Mixer can abscond with funds or reveal the shuffle.

Can we securely mix without a trusted mixer? Answer: yes!

• on Bitcoin: CoinJoin (used by, e.g., Wasabi wallet)

• on Ethereum: Tornado cash, Privacy Pools, …

 … a single mixer using ZK proofs – next lecture

CoinJoin: Bitcoin Mixing without Mixer

A1: 5, A3 (change addr)
A2 (post mix address over Tor) A1: 5, A3

B1: 3, B3
C1: 2, C3

B2, A2, C2

The setup: Alice, Bob, and Carol want to mix together.
 Alice owns UTXO A1:5, Bob owns UTXO B1:3, Carol owns C1:2

B1: 3, B3 (change addr)
B2 (post mix address over Tor)

(same as Alice and Bob)
public forum

mix
addresses

CoinJoin: Bitcoin Mixing without Mixer

CoinJoin TX: all three prepare and sign the following Tx:

inputs (not private): A1: 5, B1: 3, C1: 2

outputs (private): B2: 2, A2: 2, C2: 2

outputs (not private): A3: 3, B3: 1

Mixed UTXOs all have same value = min of inputs (2 in this case)

All three post sigs on Pastebin ⇒ one of them posts Tx on chain.

mix addresses

Coinjoin drawbacks

In practice: each CoinJoin Tx mixes about 40 inputs
• Large Tx: 40 inputs, 80 outputs

All participants must sign CoinJoin Tx for it to be valid
 ⇒ ensures all of them approve the CoinJoin Tx
 … but any one of them can disrupt the process

Private Tx on a public blockchain

Beyond simple mixing

Can we have private transactions
on a public blockchain?

Naïve reasoning:

 universal verifiability ⇒ transac:on data must be public

 otherwise, how we can verify Tx ??

crypto magic ⇒ private Tx on a publicly verifiable blockchain

Crypto tools: commitments and zero knowledge proofs

A paradigm for Private Tx
public blockchain

committed state Tx 𝜋 updated
commi>ed state

anyone can
verify 𝝅

(reveals nothing about Tx data or state)

Committed data: short (hiding) commitment on chain
Proof 𝝅: succinct zero-knowledge proof that

(1) committed Tx data is consistent with committed current state, and
(2) committed updated state is correct

committed
Tx data

Review: cryptographic commitments

Cryptographic commitment: emulates an envelope

Many applications: e.g., a DAPP for a sealed bid auction

• Every participant commits to its bid,

• Once all bids are in, everyone opens their commitment

data data

Cryptographic Commitments

Syntax: a commitment scheme is two algorithms

• commit(msg, r) ⇾ com

• verify(msg, com, r) ⇾ accept or reject

 anyone can verify that commitment was opened correctly

commitment stringsecret randomness

Commitments: security proper6es
• binding: Bob cannot produce two valid openings for com
 More precisely: no efficient adversary can produce
 com, (m1, r1), (m2, r2)

 such that verify(m1, com, r1) = verify(m2, com, r2) = accept

 and m1 ≠ m2.

• hiding: com reveals nothing about committed data

 commit(m, r) ⇾ com, and r is sampled uniformly in a set 𝑅,
 then com is statistically independent of m

Example: hash-based commitment
Fix a hash func>on 𝐻: 	𝑀	×	𝑅	 ⇾ 	𝐶	 (e.g., SHA256)
 where 𝐻 is collision resistant, and |𝑅| ≫ |𝐶|

• commit(𝑚 ∈ 𝑀, 	𝑟 ⇽ 𝑅): com	= 𝐻(𝑚, 𝑟)

• verify(𝑚,	com, 𝑟): accept if com = 𝐻(𝑚, 𝑟)

binding: follows from collision resistance of 𝐻
hiding: follows from a mild assump>on on 𝐻

Succinct zero knowledge proofs:
an important tool for privacy on the blockchain

What is a zk-SNARK?

What is a zk-SNARK ? (intuition)

SNARK: a succinct proof that a certain statement is true

Example statement: “I know an 𝑚 such that SHA256(𝑚) = 0”

• SNARK: the proof is “short” and “fast” to verify

 [if 𝑚 is 1GB then the trivial proof (the message 𝑚) is neither]

• zk-SNARK: the proof “reveals nothing” about 𝑚

Commercial interest in SNARKs

Many more building applications that use SNARKs

Blockchain Applica6ons I

Outsourcing computa/on: (no need for zero knowledge)
 L1 chain quickly verifies the work of an off-chain service

Examples:
• Scalability: proof-based Rollups (zkRollup)
 off-chain service processes a batch of Tx;
 L1 chain verifies a succinct proof that Tx were processed correctly

• Bridging blockchains: proof of consensus (zkBridge)
 Chain A produces a succinct proof about its state. Chain B verifies.

To minimize gas: need a short proof, fast to verify

Blockchain Applications II

Some applications require zero knowledge (privacy):

• Private Tx on a public blockchain:
• zk proof that a private Tx is valid (Tornado cash, Zcash, IronFish, Aleo)

• Compliance:
• Proof that a private Tx is compliant with banking laws (Espresso)

• Proof that an exchange is solvent in zero-knowledge (Raposa)

More on these blockchain applications in a minute

Many non-blockchain applications

Blockchains drive the development of SNARKs

 … but many non-blockchain applica8ons benefit

Arithmetic circuits
• Fix a finite field 𝔽 = 0,… , 𝑝 − 1 for some prime p>2.

• Arithme/c circuit: 𝐶: 	𝔽𝑛	 ⇾ 	𝔽
• directed acyclic graph (DAG) where

internal nodes are labeled +, −, or ×
inputs are labeled 1, 𝑥1, … , 𝑥𝑛

• defines an n-variate polynomial
with an evalua>on recipe

• |𝐶| 	= # gates in 𝐶 𝑥1 𝑥2 1

+ −

×

𝑥1(𝑥1+ 𝑥2+ 1)(𝑥2− 1)

Interes6ng arithme6c circuits

Examples:

• Chash(h, m): outputs 0 if SHA256(m) = h , and ≠0 otherwise

 Chash(h, m) = (h – SHA256(m)) , |Chash| ≈ 20K gates

• Csig(pk, m, σ): outputs 0 if σ is a valid ECDSA signature
 on m with respect to pk

(preprocessing) NARK: Non-interactive ARgument of Knowledge

Preprocessing (setup): S(𝐶) ⇾ public parameters (𝒑𝒑, 𝒗𝒑)

Public arithmetic circuit: 𝐶(𝒙, 𝒘) 	⇾ 	 𝔽

public statement in 𝔽! secret witness in 𝔽"

Prover Verifier

𝒑𝒑, 𝒙, 𝒘 𝒗𝒑, 𝒙

accept or
reject

proof 𝝅 that 𝐶(𝑥, 𝑤) = 0

A preprocessing NARK is a triple (S, P, V):

• S(𝐶) ⇾ public parameters (𝑝𝑝, 𝑣𝑝) for prover and verifier

• P(𝑝𝑝, 𝒙,𝒘) ⇾ proof 𝜋

• V(𝑣𝑝, 𝒙, 𝝅) ⇾ accept or reject

(preprocessing) NARK: Non-interac>ve ARgument of Knowledge

NARK: requirements (informal)
Prover P(𝑝𝑝, 𝒙,𝒘) Verifier V (𝑣𝑝, 𝒙, 𝝅)

proof 𝜋
accept or reject

Complete: ∀𝑥,𝑤: 	 𝐶(𝒙,𝒘) 	= 0 ⇒ Pr[V(𝑣𝑝, 𝑥, P(𝑝𝑝, 𝒙, 𝒘)) = accept] = 1

knowledge sound: V accepts ⇒ P “knows” 𝒘 s.t. 𝐶 𝒙,𝒘 = 0
 (an extractor 𝐸 can extract a valid 𝒘 from P)

Optional: Zero knowledge: (𝐶, 𝑝𝑝, 𝑣𝑝	, 𝒙, 𝜋) “reveal nothing” about 𝒘

SNARK: a Succinct ARgument of Knowledge

A succinct preprocessing NARK is a triple (S, P, V):

• S(𝐶) ⇾ public parameters (𝑝𝑝, 𝑣𝑝) for prover and verifier

• P(𝑝𝑝, 𝒙,𝒘) ⇾ short proof 𝜋 ; len(𝜋) = 𝑂.(𝐩𝐨𝐥𝐲𝐥𝐨𝐠 𝑪)

• V(𝑣𝑝, 𝒙, 𝝅) fast to verify ; Fme(V) = 𝑂.(𝑥 , 𝐩𝐨𝐥𝐲𝐥𝐨𝐠 𝑪)

V has no time to read 𝐶 !!short “summary” of circuit

[for some SNARKs, len 𝜋 = time 𝑉 = 𝑂. 1]

SNARK: a NARC (complete and knowledge sound) that is succinct

zk-SNARK: a SNARK that is also zero knowledge

SNARK: a Succinct ARgument of Knowledge

The trivial SNARK is not a SNARK

(a) Prover sends 𝒘 to verifier,
(b) Verifier checks if 𝐶(𝒙,𝒘) = 	0 and accepts if so.

Problems with this:

(1) 𝒘 might be long: we want a “short” proof

(2) compuFng 𝐶(𝒙,𝒘)	may be hard: we want a “fast” verifier

(3) 𝒘 might be secret: prover might not want to reveal 𝒘 to verifier

The SNARK zoo … next lecture

STARK

Breakdown

Orion

Bulletproofs

Halo2 Plonk

Marlin

Sonic

Groth16 Gemini

DARKPlonky2

Open: one SNARK to rule them all
Spartan

Nova Hyperplonk

Hyrax ⋮

SNARKs in practice

DSL
program
Circom,

ZoKrates,
Leo,
Zinc,
Cairo,
Noir,

…

SNARK
backend
prover

𝑥, witness

𝜋

heavy
computation

domain specific
language

SNARK
friendly
format
circuit,
R1CS,
AIR,

EVM
byte code

…

compiler

END OF LECTURE

Next lecture:
more on zk-SNARKs and their applications

